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Abstract

The four presented articles in this work address distinct aspects of supporting the devel-
opment, validation and verification of state-based systems with formal models. State-
based models describe a system by defining what constitutes a state and when and how
a transition to a new state can be performed.

Software tools play a central role in supporting system development. ProB is such a
tool that visualises and analyses the behaviour of a formal specified system via “anima-
tion” and that performs automated model checking to discover errors in the specifica-
tion. Animation and model checking contribute to the development of critical software
systems and the validation of systems under development.

Each of the presented researches had lead to an implementation of an extension to the
development and validation tool ProB that has been written originally for the B method.

The first presented article explains how ProB has been extended to support the widely-
used specification language Z. It shows how errors were found just by animating spec-
ifications written in Z.

Another extension to ProB covers also a specification language, Event-B, a successor
of the B method. A main characteristic of Event-B is its refinement mechanism and
the main challenge was to support refinement and allow a user to identify problems in
refined models.

With formulas in temporal logic it is possible to express requirements with depen-
dencies between a sequence of states. The extension presented in the third part verifies
whether a model fulfils the given properties and therefore it allows to validate if the
model meets the requirements.

The last presented article applies a SAT solver via an external library to specifications
loaded into ProB. SAT solving is used as a complementary technique in ProB to improve
its capability to animate specifications. A specific aspect of this translation is that the
target formalism is less expressive than the formalism supported by ProB and not all
encountered parts of a problem statement can be translated effectively.

For every presented article it is shown how it contributes to validation and verification
of systems and which of ProB’s components are affected by the implementation of the
corresponding extension.
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Zusammenfassung

Zustandsbasierte Modelle beschreiben ein System, indem definiert wird, was einen Zu-
stand des Systems ausmacht und auf welche Weise und unter welchen Umständen Zu-
standswechsel vollzogen werden können. Die hier vorgestellte Arbeit befasst sich mit
der Unterstützung von Entwicklung, Validierung und Verifikation von Systemen, die
mittels zustandsbasierten formalen Modellen entworfen werden.

Eine zentrale Rolle bei der Unterstützung der Systementwicklung bilden Software-
werkzeuge. Bei ProB handelt es sich um solch ein Werkzeug, welches das Verhalten
formaler Spezifikationen für einen Benutzer begreifbar macht („Animation“) und au-
tomatisierte Modellprüfungen darauf ausführt. Dies trägt bei der Entwicklung kriti-
scher Software mit zur Validierung und Verifizierung des zu entwickelnden Systems
bei. Alle Arbeiten resultierten in konkrete Erweiterungen des Entwicklungs- und Vali-
dierungswerkzeuges ProB, das ursprünglich für die B-Methode geschrieben wurde.

Zunächst wird erläutert wie ProB erweitert wurde, um die Spezifikationssprache Z
zu unterstützen. Es wird gezeigt, wie allein durch Animation von Z Spezifikationen
sicherheitskritischer Anwendungen in diesen Fehler gefunden werden konnten.

Auch die nächste Arbeit erweitert ProB um eine Spezifikationssprache. Ein wesent-
liches Merkmal von Event-B ist die Möglichkeit zur Modellverfeinerung („Refinement“),
auf deren Unterstützung ein besonderes Augenmerk gelegt wurde. Entwickler sollen
in die Lage versetzt werden, schnell Probleme im Refinement zu entdecken und zu be-
heben.

Mittels temporal-logischer Formeln lassen sich Anforderungen an das System for-
mulieren, die sich über eine Abfolge von Zuständen und Zustandsänderungen erstre-
cken. Die vorgestellte Erweiterung für ProB kann prüfen, ob ein System diese An-
forderungen erfüllt.

Der letzte Teil befasst sich damit, wie Modelle, die von ProB analysiert werden, so
übersetzt werden könne, dass mit Hilfe von SAT Solvern Lösungen gesucht werden kön-
nen. SAT Solving steht damit als komplementäre Technologie zur Verfügung, um um
die Möglichkeiten zur Analyse komplexer Modelle zur verbessern.

Zu allen Arbeiten wird kurz vorgestellt, wie sie zur Validierung und Verifikation
von Systemen beitragen und welche Komponenten von ProB die Implementierung der
entsprechenden Erweiterung betrifft.
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1 Introduction

The articles collected in this thesis have all in common that they explore different tech-
niques to analyse state-based models with the tool ProB. They all describe new func-
tionality implemented as additions to ProB.

In Section 1.1 of this introduction, we want to gain a basic understanding of what
state-based models are and what we want to achieve with the newly developed aspects
of the tool. We have a brief look at the concepts of verification and validation to ensure
the quality of a software system and how a tool like ProB can support verification and
validation of such state-based systems.

Because ProB plays such a central part in this thesis, Section 1.2 gives an overview
about its structure and main features.

The next four sections (1.3–1.6) give brief introductions to the topics of the articles
that are included in this thesis and covers some questions:

• What new capabilities are gained for ProB by the extension?

• How are verification and validation affected?

• Where has it been integrated into ProB and how does it affect the tool’s structure?

• How does the extension affects the interaction with the user?

• How has the feature been developed after the release of the article and what are
potential future works?

Also some bureaucratic aspects are presented:

• All articles have two or more authors. What is the contribution of this thesis’ au-
thor to the specific article? Every participating author had contributed to each
article as whole and most ideas and concepts have been elaborated together.

• Where was the article first published and what is the journal’s impact factor if
there exists any?

1.1 State-based Formal Methods and Animation

Requirements and specifications expressed in a natural language usually contain am-
biguities which can be a source to many errors during the development of a software
system. Formal methods approach this problem by specifying properties of the system
with mathematical logic.

1



1 Introduction

The effect of applying formal methods are twofold. Firstly, writing specifications and
expressing properties of the system in a rigorous way that avoids ambiguities remove a
major source of errors during the development. Secondly, the availability of a specifica-
tion with clearly defined semantics allow to reason about the specification’s properties
and apply verification techniques like mathematical proofs or model checking (see Sec-
tion 1.1.4). When a formal method is applied to the complete development phase of the
software, it can even been proved that an implementation meets its specification.

1.1.1 Validation and Verification (V&V)

ISO 8402-1994 [fS94] defines validation as (emphasis by us):

Confirmation by examination and provisions of objective evidence that the
particular requirements for a specific use are fulfilled.

The same standard defines verification as

Confirmation by examination and provisions of objective evidence that the
specified requirements have been fulfilled.

Often, validation and verification are described as “Are we building the right thing?”
(validation) and “Are we building it right?” (verification).

We now give a small introduction to state-based formal methods and how are they
used to support validation and verification.

1.1.2 Formal Methods and V&V

Formal specifications provide a rigorous description of a system due to their mathe-
matical nature. On the other hand they are usually provide a high level of abstraction
in comparison to code written in a programming language. The use of formal methods
has several impacts to verification and validation:

• The most prominent use of a formal specification is to show that a software imple-
mentation meets is specification. This verification can be done by formal proof or
in some cases also by model-checking.

• Using a formal method affects already the way we think about the original prob-
lem statement and helps to find flaws in the requirements — in other words it
helps us to validate the requirements. The following quote comes from a report
about the experiences in industrial use of formal methods [Bar11]:

[. . . ] that benefits are first realised as the very act of expression within a
formal notation causes the author to explore the problem domain with
a logical mindset — thereby detecting and investigating incompleteness
in the requirements early in the life cycle.

2



1.1 State-based Formal Methods and Animation

• Formal methods allow to express properties that a system should have. A spec-
ification can then be checked if it has those properties. An example for this are
temporal properties encoded in LTL that can be checked by a model-checker. An-
other example would be to specify series of actions that the model should be able
to perform. These “test cases” provide a kind of validation that needed function-
ality is present in the developed system.

• Animation (see Section 1.1.4) of a specification allows the user to gain a better
understanding on how the specified system works and to see if it fits the require-
ments.

The benefit of a formal specification can already be so large that it is used even in
situations where the development of the software system continues in an informal way
and without additional verification techniques like formal proof [Bar11]. In a case study
[DVR96] for the NASA the authors applied formal methods to the requirements analysis
and uncovered several flaws that have not been noticed in the existing informal process.

1.1.3 State-based Formal Methods

State-based formalisms focus on an explicit description of what constitutes the state of
a system and how a state can be altered under what conditions. Usually this is done by
defining a set of variables and their possible range of values.

Transitions between states are defined by operations or events. Usually in software
systems the term operation is used whereas in system modelling the term event is pre-
ferred because also non-software events like “train A moves from track segment X to
segment Y” are part of the specification. A definition of an event usually contains a
condition when it can happen (called “guard”) or in which situation the operation can
be called (called “precondition”) and by an effect that describes how the variables of
the system will be changed. The behaviour of such systems is implicitly given by ob-
serving how the system can evolve starting from initial states by successively applying
operations resp. events to the state.

In this work, we will use the terms operation and event synonymously.

Later we will see that the B method and Event-B also provide a mechanism called
refinement which makes it possible to start with a very abstract and concise specification
of a system and gradually add more complex properties.

Formal methods besides state-based methods

There are other forms of formal methods that do not focus on the system’s state. We use
the data structure of a stack as small example to illustrate the different approaches to
specify its properties.

In state-based approaches like B, we define the possible states by variables and its
possible values. In this case, we define a variable size for the number of values currently

3



1 Introduction

stored in the stack and a variable stack that contains a mapping from the position (0 at
the bottom, size − 1 at the top) to the concrete value (an integer):

size ∈ �
stack ∈ 0 . . size − 1� Z

The operation push increases the stack and puts the new element x on top:

push(x) = PRE x ∈ �
BEGIN

size := size + 1 ||
stack := stack ∪ {size �→ x}

END

The stack must be non-empty when the operation pop can be called. It decreases the stack
and returns the top element x (the expression 1 . . size − 2 � stack contains all elements
of the stack between position 1 and size − 2):

x ←− pop = PRE size > 0
BEGIN

size := size − 1 ||
stack := 1 . . size − 2� stack ||
x := stack(size − 1)

END

Process algebras (e.g. CSP [Hoa85] and CCS [Mil82]) specify in which order events
can happen in a system and how concurrently running processes can interact via mes-
sages.

In CSP we can define a process P which can either do nothing (skip) or an element x
can be pushed to the stack which can be retrieved later via pop. Between these events,
the process can happen recursively and arbitrarily often.

P = skip � push!x → P → pop?x → P

The operator � denotes external choice, i.e. the process can behave either like its left or
its right argument but the choice which one is taken is made by the environment.

Actually, ProB supports CSP and the LTL model-checker (see Section 1.5 or the article
in Chapter 4) is also applicable to CSP specifications. But the main focus of this work
are state-based formalisms.

Algebraic methods concentrate on the properties of mathematical objects. For ex-
ample, it could be stated that first adding and then removing an element from a data
structure would leave it effectively unchanged. So the following holds for a stack s and
two functions push and pop that return a modified stack as result:

pop( push(s, x) ) = s

4



1.1 State-based Formal Methods and Animation

1.1.4 Animation and Model-Checking

Animation

Animation of a formal model denotes the search for concrete valuations of variables that
match specified properties. The term animation is at least used in the B, Event-B and
Z community. An alternative term is “simulation” as it is used in the ASM community
[FGG07].

Animation also means that events or operations can be evaluated which again can
be used to explore the reachable states of a model in a state-based formalism. It shows
the user concrete examples of how the system can evolve with time. Thus animation
plays a important role for the validation of a specification by giving the user a deeper
understanding on how the specified system will behave and if it fits the informal require-
ments. Even without checking the model against further formal properties, animation
can help to uncover flaws in the specification. In our article about animating Z specifi-
cations (Section 1.3) we describe how we animated a (modified) industrial specification
of a safety critical system and discovered errors just by inspecting the animation.

Model-Checking

With model checking [CGP99] we can verify that a model fulfils certain properties. Usu-
ally this is done by trying to find a counter-example to the desired property which makes
it also easier to communicate to the user why the check failed. In contrast to formal
proofs the verification is performed fully automatically, thus model checking is often
referred to as a “push-button” technology.

Explicit-state model checking systematically computes all reachable states of a model
and checks if the explored state space satisfies the desired properties. Animation
can be used to generate the possible states. ProB supports basically two types of
explicit-state model checking. Firstly, it can be used to check each state against a
given property (e.g. if an invariant holds or if the state is a deadlock state where
no more events are enabled) or secondly the LTL model checker (see Section 1.5)
verifies if every possible executable sequence of states and events satisfies a given
formula in temporal logic.

Symbolic model checking on the other hands avoids the enumeration of reachable states.
Instead it tries to find a solution to a logical formula that describes a possible
counter-example. ProB also supports symbolic model checking for several pur-
poses. E.g. under the name “constraint-based invariant check” it can be checked
if the occurrence of an event E in a valid state always leads to a valid state. The log-
ical formula to solve can be stated as follows: Let the variable v represent a state of
the system where the invariant I holds. The event E’s before-after-predicate BA(E)
connects v with a successor state v′. In a counter-example the invariant I does not
hold for v′ anymore. Formally, we look for a solution for:

∃ v, v′ | I ∧ BA(E) ∧ ¬ I′
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Animation can be used to search for solutions of this formula.

As we have seen, animation can serve — and does so in ProB — as a technological
fundament for both explicit and symbolic model checking.

Model checking has the advantage over proof that it can be done automatically with-
out user interaction. But the downside of model checking is that the success of the
method depends on the complexity of the model. Even simple models can lead to a
huge or even infinite number of possible states that are impossible to check and where
the absence of errors cannot be guaranteed anymore. Also for model checking often
additional assumptions are made to limit the complexity of the search. For example,
the size of a deferred sets is fixed to a small integer for a check whereas the specification
states no further limitations on its cardinality.

But even then model checking can be a valuable tool for verification to the engineer.
In case a proof cannot be discharged automatically, a model checker can serve for “de-
bugging” the specification. In situations where a prover is not able to discharge a proof
obligation it is not clear whether there is no proof (i.e. the proof obligation is not valid)
or the prover is to weak to find it. In general this problem (deciding whether a predicate
can be proven given a set of hypotheses) is known as the “Entscheidungsproblem” and
it had been shown by Church and Turing [Chu36, Tur36] that no general solution exists.
For the engineer this means concretely that he has to decide whether to spend more
effort into trying to prove the goal interactively or to understand how the model must
be changed to work correctly. A model checker can now try to find a counter-example
to the proof obligation. If such a counter-example can be presented, it avoids unneces-
sary effort and helps the engineer to comprehend the problem in model. Of course, the
model-checker can neither give a definite answer whether a predicate holds or not in
general. That would contradict the undecidability of the “Entscheidungsproblem”.

As we have seen, model-checking is primarily used as a verification technique. But
it also has an impact to validation because it enables us to check if the a specification
has certain additional properties (e.g. a temporal formula given in LTL holds). With
this ability we can formalise requirements and check if the system we are specifying
implements these. Thus we are asking again the question “are we building the right
thing?” and have an answer (specific to a certain feature the model should have) by the
model-checker.

1.1.5 The B Method and Event-B

Since ProB was originally developed for the B method we give a brief overview about
the core features of this formalism and its successor Event-B. For a more detailed expla-
nation, see [Sch01, Abr96] for classical B resp. [FM, Abr10] for Event-B.

To express formal statements both formalisms use predicate logic with arithmetic, set
theory and relations.
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The B Method

The B method is designed to support specification and implementation of software com-
ponents. The central artefact of a specification is a so-called abstract machine. An ab-
stract machine can have the following components:

Constants and properties The values of constants do not change during the operation of
a machine. A predicate is used to define which properties these constants have.
For example, for a railway interlocking system we can define a constant topo that
represents the track topology and in the properties we express that topo is a relation
between track segments that represents an undirected graph.

Variables and invariant With variables we define what constitutes a state of a system. A
predicate, called the invariant, describes which states are assumed to be always
valid during the execution of the system. In the interlocking example from above, a
variable pos could be used to represent the current position of trains. The invariant
states that it is a function from a train to a track segment and that two trains are
not allowed to be located on the same segment.

Operations Operations describe which precondition must be satisfied when they are
called and how the machine’s variables will be changed. B provides an exten-
sive set of “generalised substitutions” to enable a user to specify the behaviour of
the operations. These can be simple assignments (like x := E for x’s new value will
be E), more complex structures like if-then-else constructs, up to “any”-statements
where local variables can be introduced whose values are specified by a predicate.

The machine’s initialisation is a special case of an operation.

The consistency of a machine (i.e. the invariant holds in any reachable state) is proven
by induction: First it must be shown that the initial states fulfil the invariant. Then for
each operation it must be proven that the new state also fulfils the invariant under the
assumption that the original state already fulfilled it and that the precondition holds.

Thus the machine’s invariant is used to encode two kinds of properties:

• Safety properties (something that must never be false) that originate directly from
the system’s requirements.

• Properties that are added to the invariant because they are needed for a proof of
invariant preservation for an operation.

A central concept of the B method is the stepwise refinement of an abstract machine
where subsequently more details are added to the specification. The aim of the refine-
ment steps is to develop an implementation starting from an abstract and easy-to-read
specification. It must be proven for each operation in a refinement that its behaviour
corresponds to the behaviour of the refined operation. Finally, the result is an imple-
mentation that is proven to behave like the abstract machine specifies.
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Event-B

Whereas the focus of the B methods lies on the specification, development and imple-
mentation of software components, Event-B’s purpose is system development. In gen-
eral, Event-B can be regarded as a simplification of classical B:

• The mathematical toolkit is very similar to classical B but some features like se-
quences have been removed. Theories [BM13] introduce a generic way to define
new data types and operators.

• Classical B has many forms to combine and re-use machines (constructs like “in-
cludes”, “uses” or “sees”). Event-B has two types of artifacts: Machines with vari-
ables, invariants and events to encode the dynamic behaviour of a system where
refinement is the only supported relation between two machines. Contexts con-
tain constants and axioms and describe the static properties of a system. A context
can extend an arbitrary number of other contexts.

• An event just contains parameters, guards and assignments. The assignments
have basically the form var := expression. Classical B in contrast supports many
general substitutions like ���, ��� or ��–	
��–����. They can be arbitrarily nested.

• The proof obligations for refinement have been simplified. During refinement
Event-B allows to strengthen a guard with the result that events might not be
able to happen in situations where the abstract specification allows the event to
happen. This simplifies the design of comlex systems but can be a limitation if
software components are developed where an implementation must be able to act
upon every possible specified input.

• Code generation to executable languages like C or ADA is (at the time of writing)
not an integral part of Event-B. Several methods to generate code from refined
Event-B models have been proposed (e.g. [MS11, EBM+12, FHB+14]).

1.1.6 ProB

ProB [LB08] was originally developed to animate and model check specifications that
are written with the B method.

Figure 1.1 shows ProB animating a scheduler specified in B. The specification’s source
code is shown in the upper half of the picture, in the lower half you can see three panels.
The left panel shows properties of a concrete state that has been reached by executing
successively some operations. In this case, it shows that the invariant is not violated and
a list of the variables’ values. The right panel the operations that have been executed to
reach the current state with the last one on top and the first at the bottom. The panel in
the middle shows the operations that are currently available. When a user clicks on one
of the operations, the new state is shown.

For the support of Event-B another user interface based on the Eclipse platform was
developed that allowed ProB to be integrated into the Rodin development platform.
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Figure 1.1: Screenshot of ProB’s Tcl/TK user interface, version 1.5.0

Arguably, that interface is more user friendly but does not support all features that are
provided by ProB. At the time of writing “ProB 2” is under active development which
should replace the Tcl/TK user interface by an Eclipse and HTML-based interface in
future [BCD+13].

Supported formalisms

B remained not the only formalism supported by ProB, amongst others it supports the
state-based methods:

• Event-B (see Chapter 1.4)

• The Z notation (see Chapter 1.3)

• TLA+ [HL12, Lam02]

With the process algebra CSP (Communicating Sequential Processes [Hoa85]) ProB
supports even a formal method that is not state-based [LF08]. Also a combination of
B and CSP, called CSP||B, is supported. The CSP part of such specifications defines in
which order B operations can be called.

Basic features of ProB

ProB provides a number of features that allow the validation and verification of formal
models. We give a brief list of important features:
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User friendliness One of the basic principles of ProB is that the barrier for a user to ani-
mate a specification should be kept as low as possible. Usually opening a specifi-
cation file is already enough to start its animation. Only for some more complex
models a user needs to alter preferences that influence how the animation or the
model check behaves.

Animation ProB tries to find possible values for variables and constants that match the
given properties without further interaction with the user. It presents the com-
puted solutions in the user interface and shows which operations are available in
the current state.

Animation gives the user insights into the specification and allows him to check if
the model behaves as expected.

Model checking The state space can be explored automatically via animation and each
encountered state is then checked for errors like invariant violations. With the
implementation of the LTL extension (see Chapter 1.5) an alternative approach to
model checking can be used. Both modes of model checking are forms of explicit
model checking because each encountered state of the model is stored and han-
dled explicitly.

To reduce the possible number of states that have to be checked, ProB implements
various forms of “symmetry reduction” [SL08, LBST07, LM07].

Graphical visualisation of a state BMotionStudio is an extension to ProB that allows to cre-
ate a graphical representation of the animated system. This improves the compre-
hensibility of a system’s behaviour and can make the system’s state comprehen-
sible even for domain experts who may not be able to read and understand the
formalism used to specify the system.

Visualisation of the state-space The state space can be visualised as a graph where each
state is represented by a node and operations that lead from one state to another
are represented by an edge.

Evaluation of expressions A user has the ability to enter arbitrary expressions or predi-
cates that can be evaluated in every state of the model. This can be done in a con-
sole view, similar to command line interfaces of operating systems or via a tree that
represents the formula (see Fig. 1.2) and that can be used to inspect sub-formulas
of expressions.

Constraint based checks The model checking that we presented above is based on explor-
ing the state space. Another approach to check properties is to set up a predicate
that describes the counter-example to such a property and try to find a solution to
the predicate with ProB’s animation facilities.

Examples for constraint based checks are
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• invariant preservation: For a system with variables v and invariant I and an
event e with before-after-predicate BA(e) find a solution for:

∃ v, v′ ·I ∧ BA(e) ∧ ¬ I′

• deadlock freedom: For a system with variables v, invariant I and events e1,
. . ., en with their guards G1, . . . ,Gn, find a solution for:

∃ v·I ∧ ¬ (G1 ∨ . . . ∨ Gn)

• test case generation: To generate test cases based on a given model, the goal
is to find sequences of events that cover certain events or states that match
given constraints. One approach as described in [WKR+09] is to search for
matching sequences in the generated state space.

Another approach is to set up a predicate that describes a specific sequence
of events to check if there exists a valuation for the constants and variables
which fulfils the predicate and additional constraints. This approach is a kind
of constraint based check and had been successfully applied in models where
the coverage of some situations depends on the choice of constants or initial
variables.

At the time of writing, various other examples for constrained based checks and
evaluations are added, e.g. a check if an invariant is always fulfilled if other in-
variants are fulfilled. In that case the superfluous invariant could be marked as a
theorem by the user to save effort in proving of the model’s correctness.

Trace checking During an animation, a user has the ability to save the current history –
the sequence of events from an initial state to the current state – to a file. Later
the file can be loaded again by ProB to check whether it is possible to replay the
sequence of events in a model. Used this way, the trace is a kind of test case for the
developed model. This feature provides a mean to validate the model by checking
that it shows a certain behaviour.

Disprover The development platform Rodin generates proof obligations for a model that
must be proven automatically or interactively by an user to show the model’s cor-
rectness. A proof obligation basically consists of a set of hypotheses H and a goal
G and the formula H ⇒ G must be proven. ProB can be used as a “disprover”, it
tries to find a counter-example for H ∧ ¬ G. This can save a lot of time and effort
for an engineer who is developing a model of a system because it spares him the
work of proving an incorrect property.

This feature can be regarded as a special case of the constraint based checks. To-
gether with other constraint based checks and a search for invariant violations
these are core features to support an engineer in his verification effort.

In some cases we can be certain that ProB did an exhaustive check when trying
to find a counter-example. In those special cases the failure to find one can be
regarded as a proof for the validity of the proof obligation [KBL14].
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Figure 1.2: Evaluation as a tree in ProB’s Tcl/TK interface (version 1.5.0)

1.2 The ProB Architecture

Since all four articles in the chapters below describe work that had directly resulted in
extensions to ProB, we give a brief overview about how ProB is structured. Later we
will describe which parts are affected by each extension.

Besides the user interfaces, most parts of ProB are written in the programming lan-
guage Prolog [Ste94]. Especially the constraint solving core of ProB makes use of mod-
ern Prolog features like co-routining and constraint solving.

1.2.1 A Walkthrough through ProB

To see how ProB works, we have a look at what happens when a user wants to load a
B specification. Figure 1.3 shows a simplified outline of ProB’s architecture. The blue
rectangles represent components that are presented in the following example. These
components are the central part of ProB’s animation and model checking capabilities.

The user interface at the top of the figure invokes and controls the different function-
alities below. At the time of writing their are at least four different user interfaces:

• A graphical interface written in Tcl/TK that provides most functions of ProB.

• A plug-in to the Rodin platform, which is another graphical interface that has an
arguably more modern feel to it then the Tcl/TK interface, but it does not provide
access to ProB’s complete functionality and is restricted to Event-B specifications.

• A web-based interface (ProB 2) that is also integrated in Eclipse is currently under
development and should replace the two interfaces above.

• ProB can also be invoked from the command line to perform tasks without any
further user interaction and need for a graphical user interface.

Many modules of ProB are not directly accessible to the user, they provide various
internal functions that are used by other parts of the system. They are represented by the
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Parser
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Interpreter
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State Space
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Figure 1.3: Overview over ProB’s structure

grey box labelled “Tools” in the figure. Examples are manipulations to abstract syntax
trees, logging, etc.

We have described various aspects of ProB in Section 1.1.6 above. Many of those
features are an integral part of ProB and are represented by the orange boxes in the
figure.

Loading the specification

After a user has selected the file containing the model the parser is invoked, a prepro-
cessing module extracts the different part of the specification (like variables, invariant,
operations, etc.), determines visibility rules for identifiers and applies the typechecker
to the syntax tree. The result is a representation of the loaded machine with abstract
syntax trees for the various expressions and predicates in the specification.

Interpreting the specification

Let’s assume the specification defines two constants x, y and properties y = 2 · x ∧ x ∈
{2, 3} that should be fulfilled by them. ProB sets up a “store” with entries for x and y
that initially contain their undefined values.

Then the interpreter is invoked on the predicate – the interpreter looks up values in
the store whenever a constant is referenced. The constrained solving core is called for
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each of the encountered expressions or properties. For the left part (y = 2 · x) of our
small example, the interpreter would look up the values of x and y in the store which
would still not be bounded to concrete values. Then it would call a Prolog predicate in
the core that computes the value of 2 · x and then another call would be used to state
that the result of the computation is equal to y’s value. Since x is not yet bound to any
value, 2 · x neither has a concrete value at this stage, but constraints are bound to the
Prolog variables that represent them. After the interpreter has evaluated both the left
and right side of the predicate, no concrete values for x and y have been found but the
constraint solver is able to infer that x’s value is between 2 and 3.

Because there are still variables in the store that have no concrete value, enumeration
of possible values is initiated. Since the bounds for x are known, ProB sets first x to 2,
then to 3. Due to the constraints that were set up by the interpreter, the value for y will
be directly computed. ProB will find two solutions for the stores with x = 2, y = 4 and
x = 3, y = 6.

State space

The two possible states that have been found are stored in the state space as two possible
configurations for the constants. In an animation, the user can choose between both
solutions as if the set up of the constants were operations of the specification.

When a user selects one of the solutions, the selected store is retrieved from the state
space and a new store with the model’s variables is created. The interpreter then eval-
uates the initialisation of the machine to find values for the variables. Again, after a
possible enumeration phase, found solutions are stored in the state space.

After initialisation, this process is then repeated for each newly encountered state and
each event. Beside the store that holds the values of variables and constants, also the
transitions between those states are stored which are usually the operations and the
values for their arguments.

Model checking

A user might then choose to model check the specification. In that case the model-
checker drives automatically the process described above. It selects a state in the state
space that has not been explored yet. Then it uses the interpreter to find transitions to
new or already encountered states. Each newly encountered state is also checked for a
number of properties. Usually the invariant is checked by invoking the interpreter. A
test for deadlocks would check if there are any outgoing transitions.

The model checking terminates when an error is encountered, all reachable states
have been explored or the user interrupts the check.
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The article (Section 2) describes an extension to ProB (called ProZ) that allows to an-
imate specifications written with the Z notation. The extension basically translates a
Z specification to ProB’s internal representation of a B machine. Since Z has some con-
structs like free types and some operators that cannot be effectively translated to B, some
additions had also be made to ProB’s interpreter and constraint solver. Due to Z’s lack
of structure it is assumed that the specification follows some conventions.

1.3.1 The Z Notation

The Z notation is a predecessor of the B method. Both formalisms share a common
mathematical tool kit based on axiomatic set theory and first-order predicate logic.

As its name implies the B method is a software development methodology where an
implementation of a formal specification is derived by refinement steps. The implemen-
tation represents executable code and can be transformed to C or ADA source code. The
B method provides several constructs like variables, operations or invariants to identify
various aspects of the system.

Z on the other hand provides a more general notation for specifications, but it flex-
ibility is due to the fact that the surrounding natural language text must explain what
the purpose of a formal statement is. Z’s main mechanism to structure a specification is
a schema. Schemas consist of a name, variable declarations and a predicate. They can
be combined with the “schema calculus”.

Schemas can be used to specify many things: E.g. they describe possible states of a
system or just parts of it, operations or events can be specified, or they can be used to
describe data structures.

Whereas the B-method provides concrete steps via the generation of proof obligations
to proof the consistency of a model, a user of Z must take care himself of the verification
of the desired properties. Similarly, there are approaches for refinement in Z [WD96]
but it has no specific support for it and a user has to describe himself the purpose of the
relevant schemas.

Specifying State-based Systems with Z

The usual approach to model a state-based system in Z is to specify a schema that de-
scribes the variables of the system and their possible values. Operations or events are
then specified by schemas that connect two states with a “before-after-predicate”.

We give a small example for the specification of a lift. We describe two components
of the system with schemas, the cabin that is located at a specific floor (between the
constants bottom and top) and the doors that are either open or closed:
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Cabin
floor : Z

bottom ≤ floor ≤ top

Door
door : DSTATUS

We assume that DSTATUS is a type with exactly the two values OPEN and CLOSED:

DSTATUS ::= OPEN |CLOSED

The whole system can be described as the combination of both parts:

System =̂ Cabin ∧ Door

We specify an operation by a schema Up to move the lift one level up. We include the
schema System and a variant System′ where all variables are primed (like floor′). The
latter refer to the new state. We define the operation by specifying the before-after-
predicate:

Up
System
System′

floor < top
floor′ = floor + 1
door = CLOSED
door = door′

You may have noticed the last predicate door = door′. It is necessary to specify that
variables stay unmodified. This is difference to B or Event-B where variables are mod-
ified by explicit substitutions resp. assignments. If the last predicate would have been
omitted, the door might be open in the new state.

Another noteworthy difference to B is the role of the first predicate floor < top. In
a B specification the predicate floor ≤ top from the schema Cabin above would usually
be part of the invariant. Thus for each operation that modifies floor a proof obligation
would be generated to show that floor ≤ top still holds after executing the operation. To
proof this, a guard like floor < top would be necessary to discharge the proof obligation.

The situation in Z is somewhat different: By including System′, we have floor′ ≤ top
as a part of the schema Up. With floor′ = floor + 1, we can conclude floor + 1 ≤ top
which is equivalent to floor < top. Thus the first predicate is actually superfluous and
the specified behaviour of the operation would be the same if we remove it from the
schema.
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Checking Z specifications

As we have seen above, the invariants of a Z specification cannot be violated by an op-
eration because the operation’s behaviour implies the predicates of the state. The main
focus of the work was to enable animation of Z models to provide a way to validate the
specification.

But automated checks on the model are also possible. We introduced the option to
specify a schema called Invariant. Analogously to the B model checking ProB checks in
every reached state whether the predicate of the invariant holds. Also checks for dead
locking states and checks if the system fulfils an LTL formula can be performed.

1.3.2 Significance for Verification and Validation

The Z notation has been used to specify aspects of safety critical systems. In the pre-
sented article, our case studies were modified real-world examples. By animation we
were able to discover flaws in the specification that had not yet been spotted by the
company’s quality control. This demonstrates that animation alone can actually be a
valuable tool to validate formal specifications.

Other means to validate specification like trace checking (test cases for models) and
LTL model checking are also applicable to Z models.

1.3.3 Affected Parts of ProB

We briefly explain which parts of ProB are affected by the implementation of the new
functionality (see also Figure 1.3 on page 13).

We use the existing parser and type-checker “Fuzz” [Spi00] to read Z specifications.
ProB reads the output of Fuzz and translates is to a B machine specification. Thus,
the boxes “Parser” and “Preprocessing & Typechecking” in Figure 1.3 are completely
replaced.

Only minor additions have been made to the interpreter to support some constructs
that cannot be easily expressed with existing constructs in B. These are expressions and
predicates to handle freetype values, the μ-Operator, let predicates and expressions (B
has only a LET substitution), and an if-then-else expression.

We had added the handling of freetype values to ProB’s constraint solving kernel. A
few functions regarding the handling of sequences and bags effectively have also been
added.

1.3.4 Relationship to the Other Articles

Animation of Refinements In a later addition to the work presented in Chapter 1.4, we im-
plemented support for Event-B theories (see 1.4.4). The freetype support that had
been introduced for the ProZ extension has been re-used to cope for recursively
defined data types in the theories.
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LTL model checking Since the ProZ extension leaves the state-space internals of ProB un-
affected, LTL model checking can be applied to Z specifications as well. The only
restriction at the time of writing is that the LTL parser uses the B parser for atomic
propositions such that a user has to specify those properties with B syntax.

Employing SAT solvers The translation to Kodkod can also directly be used because the
ProZ extensions translates a Z specification to ProB’s internal representation for
B. The translation to Kodkod works on this abstract syntax tree.

1.3.5 Future Developments

Improved User Experience

Currently the tools relays on the fact that the specification follows certain conventions.
Giving the user more control over what ProB uses as a state definition and what the
operations are would be more convenient, because lesser modifications have to be done
to a model to make it usable with ProB.

Another useful feature would be do let the user specify schemas and ProB searches
for a concrete valuation of the schema’s variables. This would give the user the ability
to investigate details of a specification.

Compatibility with CZT

Like Rodin for Event-B specifications, CZT [MU05] is an integrated development plat-
form for the Z notation based on the Eclipse platform. Currently ProB does not support
Z models developed with CZT. It would increase the applicability and usability of ProB
to implement a CZT plugin to animate Z specifications analogous to the Rodin plugin
to animate Event-B specification.

1.3.6 Information about the Publication

The article “Validating Z Specifications using the ProB Animator and Model Checker”
[PL07] was originally published in a conference proceedings of the “Lecture Notes in
Computer Science” series, Springer-Verlag.

The article was presented at the conference “iFM 2007 integrated formal methods”
which took place in Oxford, UK on July 2–5, 2007. Before acceptance, all papers of the
conference went through a peer review process.

For the “Lecture Notes in Computer Science” series is no impact factor available.
The paper’s authors are Daniel Plagge and Michael Leuschel.
D. Plagge’s contribution to the article are

• the content of the sections 2.2–2.5 and

• the implementation of the presented tool.

M. Leuschel’s contribution to the article are
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• expert knowledge in ProB,

• the handling of symbolic closures in 2.5.1,

• the discussion section 2.6 beside the limitations (section 2.6) of the tool and

• work on all parts of the article to make it more readable and understandable.

1.4 Animation of Refinements

To understand and reason about complex systems it is necessary to have an abstract
view on a system, its behaviour and its properties. Refinements in B and Event-B offer
the ability to start the design of a system with such an abstract view and add details
incrementally. For each refinement step it must be proven that the more concrete model
meets the behaviour specified by the abstract model.

In the B method this approach is used to start with a specification of a software com-
ponent and via refinement details are added and abstract concepts are replaced by con-
crete data structures. Finally a model is reached that can directly be translated into a
programming language like C or ADA.

ProB has currently only limited support for refinement in B. It can animate refine-
ments but it removes all abstract elements that are not directly part of the current level
of abstraction. This makes it harder to understand the relation between abstract and
concrete model and under certain conditions, ProB reports problems that are just intro-
duced by ignoring the abstract parts or on the contrary does not detect certain kind of
errors.

Event-B’s refinement mechanism has been simplified in comparison to classical B. For
a refined event, several proof obligations are generated. Together, they proof a correct
refinement and each of them is relatively easy to understand.

Another aspect that has changed from B to Event-B is the field of application. Classical
B is focused on software components where the initial specification already describes
the complete set of preconditions under which the system has to work. In this scenario
refinements must always be specified for every possible situation that the initial abstract
model permits. Event-B, on the other hand, targets the specification of whole systems.
It allows that an engineer restricts the behaviour of a system during refinement. E.g.
a specification of a railway interlocking system might define how trains can move on
the tracks with respect to the rail topology. In a later refinement one might add safety
restrictions like two trains are not allowed to share the same track segments.

The article presented in Chapter 3 first gives an overview about the various aspects
to show the consistence of an Event-B model. Then it explains how we have extended
ProB such that multiple levels of refinement can be animated. We show how violations
of proof obligations can be detected and presented to the user by the animator.

This addition gives the engineer better understanding of how a system behaves and
particularly when applied to refinements it improves ProB’s ability to support finding
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flaws in the specification compared to the previous animation of just one level of refine-
ment in isolation.

1.4.1 Significance for Verification and Validation

Refinement is a central concept both in B and Event-B. But the concept of refinement has
been simplified and is easier to use in Event-B than in classical B. As a result, specifica-
tions in Event-B make usually more use of refinement. With many levels of refinement,
the animation of a single decoupled refinement level is not very easy to understand. The
support to animate all levels together eliminates this deficit and increases the ease of use
of refinement as a technique for developing and understanding models significantly.

On the other hand, refinement is a source for several proof obligations. As we have
explained before, animation and constrained based techniques can lower the verification
effort if a proof obligation cannot be discharged automatically.

1.4.2 Affected Parts of ProB

The Rodin platform provides already modules to parse and typecheck Event-B specifi-
cations. The result of Rodin’s parser is used instead of ProB’s B parser but a translation
is applied that returns a syntax tree of the specification that is compatible with ProB’s
existing parser. Thus ProB’s existing type checker is used to transform the output of
Rodin’s parser into ProB’s internal format. The implementation of the preprocessing
is replaced by a module specific to Event-B. In particular, instead re-using the existing
representation for B operations the module generates a representation for events that
incorporates Event-B specific behaviour for all levels of refinements.

The B interpreter was accordingly extended by a rule to handle events. This is the
location where the algorithm described in the article is implemented.

Most other parts of ProB had been not affected by the extension because the internal
representation is very similar to the representation of classical B machines.

1.4.3 Relationship to the Other Articles

Animating Z Similar to ProZ, the work about the multilevel refinement animation for
Event-B makes ProB applicable for more methods of specification.

LTL model checking LTL model checking can also be applied to Event-B models with sev-
eral refinement levels. The LTL parser had been parametrised to use the Event-B
parser for atomic propositions and propositions on transitions. Thus, the LTL fea-
ture is well integrated with Event-B.

The visualisation of LTL counter-examples [Tol11] that has been added later has
been implemented in the ProB Rodin plugin and is so far specific to Event-B mod-
els.
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In the next paragraph (Section 1.4.4) we propose some additions to the LTL ex-
tension that are specific to refinements. At the time of writing no support in that
respect has been implemented.

Employing SAT solvers The Kodkod translation can be equally applied to Event-B models
as to classical B models. Additionally, the disprover plugin that is specific to Event-
B specifications can make of Kodkod.

1.4.4 Further Developments

Refinement Animation for Classical B

At the time of writing, ProB still does not support animation of more than one level of
refinement at once for classical B. Classical B’s refinement concept is more complex than
Event-B’s because the situation in which an event might occur can always further con-
strained in a refinement step. In contrast, an operation must always behave as expected
when it is called as long its precondition is fulfilled.

The algorithm shown in the article is bottom-up in the sense that it starts with the
most concrete refinement level of an event and then continues with each more abstract
level and tries to find a matching valuation .

A possible approach for classical B is to start with the most abstract specification of
the operation and find possible values for its arguments that matches the precondition.
After that we can evaluate the most concrete refinement level analogously to the existing
method for Event-B with the additional constraint that there must always be at least be
one solution if the precondition holds.

An additional obstacle is the lack of witnesses in classical B. Witnesses constitute the
link from found values in a concrete event to its abstract specification. This has to be
evaluated in more detail.

Constraint-based Checks for Refinement

ProB’s constraint based core has been constantly improved over the last years. That
made constraint based checks more and more effective. Constraint based checks for
conditions that must hold in refinement (like guard strengthening) could be added to
ProB.

User Interface

When ProB encounters an error in the specification of an event like a violation of guard
strengthening, it presents the user a description of how the error can be found. The
description contains what values have been chosen for parameters and how guards,
witnesses and assignments are evaluated when following the chain of refinements from
the most concrete event up to the abstract event where the error occurs.
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One problem with these description is that they are usually hard to understand by
a user. An approach to ease the understanding of a found error is the use of an inter-
active “worksheet” where textual descriptions and Event-B expressions and predicates
are inserted that can be analysed by the user.

Such worksheets provide a much broader range of application than just the presenta-
tion of errors in the refinement chain. They would also provide a powerful tool to help a
user in analysing, understanding and communicating various aspects of a formal spec-
ification. They subsume the functionality of a command-line console like it is already
present in the Tcl/TK interface of ProB with the difference that several forms of present-
ing data could be mixed in one document. As an example, a relation could be shown as
a graph which will be updated if the other parts of the worksheet are changed.

A prototype of such a “worksheet” for ProB has been implemented by René Goebbels
as part of his bachelor thesis [Goe13].

Theory Support

A recent extension to Event-B are theories [BM13]. They allow the definition of new
data types and operators using various approaches like direct, recursive or axiomatic
definitions. ProB does now also – with some restrictions – support the use of theories
in a model [PL14].

1.4.5 Information about the Publication

The article “Validation of Formal Models by Refinement Animation” [HLP13] was orig-
inally published in the journal “Science of Computer Programming”, Elsevier. Before
being published, articles in “Science of Computer Programming” run through a peer
review process. The impact factor of “Science of Computer Programming” in 2011 due
to the publisher Elsevier’s data is 0.622 [Els11]. The SCImage Journal Rank (SJR) for
2011 is 0.792 [SCI15b].

The article is based on a previously published paper “Refinement-Animation for Event-
B - Towards a Method of Validation” [HLP10] which was presented at the conference
“Abstract State Machines, Alloy, B and Z” which took place in Orford, Canada, on Febru-
ary 22–25, 2010. Before acceptance, all papers of the conference went through a peer
review process.

D. Plagge’s contribution to the article are

• the design and description of the algorithm and its implementation in Section 3.3
and

• how specific problems that can occur in Event-B models are detected and dis-
played to the user as explained in Section 3.4.

S. Hallerstede and M. Leuschel’s contributions to the article are

• the introduction and the in-depth description of Event-B’s proof obligations in
Sections 3.1 and 3.2,
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• the application to case studies and the evaluation in Sections 3.4.2 and 3.5 and

• the related work and conclusion in Section 3.6 and 3.7.

1.5 Temporal Model-Checking

Requirements often involve propositions about the expected temporal behaviour of a
system. An example for such a proposition is “if an event E happens, later in the future
an event F must happen, too”. A characteristic of a temporal requirement is that not
only a state in isolation is considered unlike e.g. an invariant does.

Linear temporal logic (LTL) allows to express propositions about a possible infinite
long sequence of alternating states and events. A system does satisfy a specification
given as an LTL formula if every possible sequence of events and states that can happen
starting from the initialisation of the system fulfils the formula.

The article in Chapter 4 describes how we have adapted an existing algorithm to make
it suitable for models where deadlocks can occur and where we can express propositions
on the events between two states.

A deadlock is a state of the system where no further events can occur. The handling
of deadlocks is an important feature because for the formalism we consider there is no
guarantee that a model does not have such states.

Propositions on events are a very useful feature because requirements contain often
references to events that happen in a system, not just on the states itself. In general,
it is not possible to formalise properties that describe the occurrence of an event in a
sequence as a predicate on a single state.

We have also developed a concrete syntax that basically allows a user to enter LTL
formulas for any formalism supported by ProB and we implemented support for LTL
as an extension to ProB. Section 1.5.2 gives an overview about some of its details.

Example

Again, we take a lift as an example for a specified system. Figure 1.4 shows the state
space for a lift that connects two floors. It is located either in the upper or lower floor,
its doors are closed (a cross in the cabin) or open and we store outstanding call request
for each floor (the two circles on the left). The data types of the system allow 24 possible
states but 4 states where the lift is open and the current floor has an open call request
are not reachable. So we have 12 reachable states remaining. The initial state (marked
with a “start”) is where the lift is in the lower floor, the door is open and there are no
outstanding call requests.

Now, we want to check if the model fulfils the following requirement:

Whenever the call button for the first floor is pressed, the lift will eventually
be on the first floor with the door open.
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Figure 1.4: The state space of a simple elevator, each icon encodes outstanding call re-
quests (the circles), the position of the lift and whether the door is open or
closed

In LTL, “whenever” can be expressed with the globally (G) operator and “eventually”
with the finally (F) operator.

G( [call(1)]⇒ F {floor = 1 ∧ door = OPEN } )

The model checker can actually find a counter-example (which is marked with the bold
red arrows in Figure 1.4):

1. Begin with the open lift on the lower floor, no call request are outstanding.

2. The door closes (close).

3. Somebody presses the button on the upper floor (call(1)), a call request is stored.

4. Somebody presses the button on the lower floor (call(0)), a call request is stored.

5. The door opens and the call request for the lower floor is discharged (open).

6. The door closes (close).

7. The state of the system is now the same as after the first call(1) event, the counter-
example continues with step 3 and goes into an infinite loop.

So what our lift actually does in the counter-example is to open and close the doors
infinitely often because somebody presses the call button before it moves to another
floor.
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1.5.1 Significance for Verification and Validation

If a requirement like in the example above can be formalised with LTL formulas, we
have gained the ability to check if a specification meet these requirement. Thus we have
an additional aspect of validating the model.

Formalisms like B, Event-B and Z just provide very limited support for temporal prop-
erties. Invariants can be used to express properties that must hold in every state of a sys-
tem. Liveness properties, i.e. the condition that something eventually happens, cannot
be expressed easily. One exception is the concept of convergent events in Event-B, which
can be used to show termination, i.e that some events are only finitely often enabled.

1.5.2 Affected Parts of ProB

The LTL model checker is an alternative implementation of the model checker as shown
in Figure 1.3 on page 13. Whereas ProB’s default model checker uses a mixed breadth-
first and depth-first search [LB08], the LTL model checker uses a variant of a depth-first
search.

The LTL code makes use of the state-space module to call functions that trigger the
computation of enabled events in a state. It also uses the B interpreter to evaluate atomic
propositions in a state or propositions on transitions.

There is an independent parser for the LTL formulas. The parser can be parametrized
such that another parser will be called for atomic propositions (the part of a formula
that is located between curly brackets) and propositions on transitions (between square
brackets).

1.5.3 Further Developments

Visualisation of Counter-examples

In case a system does not fulfil an LTL formula, the model checker provides a counter-
example to the user. A counter-example consists of a sequence of alternating states and
events. Without a special presentation, the sequence is loaded in ProB’s history as if the
user has just initiated an animation by choosing the events himself. In case of the found
counter-example for the lift, we would get the sequence

close → call(1) → call(0) → open → close

in the animator’s history without any further hint why the formula is false. For more
complex systems it can be very difficult for a user to see why the counter-example does
actually not fulfil the given formula.

The counter-example has a “lasso form”, where the first part is just close → call(1) and
the looping part is call(0) → open → close.

Figure 1.5 shows a possible visualisation of the counter-example. The upper rectangle
shows why the globally operator G evaluates to false. The rectangle contains all states
(the small boxes <a>,. . . ,<e>) that could possibly have an impact to the result of the
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evaluation, in this case these are all states. The colour of each box indicates whether the
argument of the operator (here the implication [call(1)]⇒F {floor = 1 ∧ door = OPEN })
evaluates to true (green) or false (red).

States that have a direct impact on the result of the operator are highlighted, e.g. the
fact that the implication evaluates to false after the first close event (box <b>) makes
globally evaluates to false. On the other hand, the first green box <a> is not highlighted
because even if it would have been red the outcome of globally would have been the
same.

The bold arrow that points to <b> indicates that the second rectangle explains why
it evaluates to false. The user of the tool can click on the boxes to decide which boxes
should be explained.

The implication is limited to just one state, unlike G or F has it no reference to future
states. It evaluates to false because the antecedent (box <g>) is true and because the
call(1) event is the next event and the consequence (box <l>) is false.

Again, the outcome of box <l> is explained by another rectangle in the bottom row. It
is false because the atomic proposition floor = 1 ∧ door = OPEN does not hold in any
of the future states (boxes <q>,. . . ,<t>).

Another issue in the visualisation are situations where the result of an operator in a
certain state is unknown because the model-checker has truncated the counter-example
when a prefix of the sequence is sufficient to show that the formula is false in the initial
state.

Andriy Tolstoy implemented in his master’s thesis [Tol11] an extension to ProB’s Eclipse-
based user interface that visualises the evaluation of an LTL formula on a given se-
quence.

Fairness

When requirements are expressed as LTL formulas, often so-called fairness conditions
arise. Again, we illustrate a fairness condition by the small lift example. The counter-
example that has been presented above may not be very convincing for real-life appli-
cations: In the loop, the lift could move the first level (the event up) infinitely often but
always somebody presses the button before that and the door opens again.

To prevent the model-checker to find such counter-examples, we can add the assump-
tion that whenever the event up is enabled infinitely often, it must finally happen. This
can be done directly in LTL:

(GFe(up)⇒ GF[up])⇒ G( [call(1)]⇒ F {floor = 1 ∧ door = OPEN } )

Such a constraint is called “strong fairness” [LP85]. A weak fairness condition would
state that up must finally happen if it is continuously enabled:

(FGe(up)⇒ GF[up])⇒ G( [call(1)]⇒ F {floor = 1 ∧ door = OPEN } )

The computational complexity to check the formula doubles with each temporal op-
erator in the formula, thus the complexity of the fair formula is 24 = 16 times larger
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G( [call(1)]⇒ F {floor = 1 ∧ door = OPEN } )
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Figure 1.5: Schema of a counter-example visualisation, the letters in the boxes are only
used to refer to them more easily in the explanation

than the for the original formula. We (Ivaylo Miroslavov Dobrikov with support by
Daniel Plagge) have implemented another approach based on the algorithm in [LP85]
to check fairness conditions. With explicit support for fairness, the formula above could
be expressed as:

SF(move)⇒ G( [call | level = 1]⇒ F{lift level = 1} )

The operator SF denotes strong fairness and can only be used on the left side of an
implication. Accordingly there is an operator WF for weak fairness.

With direct support for fairness the model-checker searches for counter-examples of
the original formula and then checks if the counter-examples is actually fair. If not, it
continues the search. This approach has only a small computational overhead to the
check of the original formula.

Fairness: Future Work

In fairness conditions as described above, we look at enabled events and events that
actually happen. The question arises when events are regarded equal. Consider that we
want to specify a fairness condition regarding the call event in the lift system. If call(1)
is enabled infinitely often in a counter-example, would the event call(0) be sufficient
to fulfil the fairness condition (in that case the specifier is not interested in the event’s
parameter) or must it be call(1)?
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A possible solution for such scenarios is to introduce the generation of a normalised
form for each event based on a specification by the user. For example, if the floor param-
eter is significant, a normalisation of call(1) would keep it unmodified. If the parameter
can be ignored, the normal form would be call. The algorithm to check the fairness
property of counter-examples would then work as before but uses the normalised form
to compare events.

At the time of writing the implementation had not been finished yet and it was still
under discussion how the specification can be integrated in the LTL syntax in a user
friendly way.

1.5.4 Information about the Publication

A first version of the article “Seven at one stroke: LTL model checking for High-level
Specifications in B, Z, CSP, and more” has been published in the proceedings [LP07] of
the conference ISoLA (International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation). An extended version has been published later in
the journal Software Tools for Technology Transfer [PL10]. To the author’s knowledge,
no impact factor for the journal has been published. The SCImage Journal Rank (SJR)
for 2011 is 0.841 [SCI15a].

D. Plagge’s contributions to the article are

• The extension of the existing formalisms for LTL[e] in Section 4.3,

• the development and implementation of the algorithm that supports deadlocks
and propositions on transitions in Section 4.4 and

• the support for LTL operators that regard the past in Section 4.5

M. Leuschel’s contribution are

• the introduction, motivation and conclusion in the Sections 4.1 and 4.8.3,

• the examples and experiments in Section 4.6 and

• the application of symmetry reduction in Section 4.7.

1.6 Employing SAT-Solvers

Another formal notation that has common ground with Z is Alloy [Jac02, Jac12]. A
design decision in the development of Alloy was to have the expressive power that pro-
vides Z with it’s mathematical toolkit of sets and relations to model software on one
hand and to restrict that expressiveness in a way that it can be easier supported by tools.

As a result, Alloy makes it possible to analysis models fully automatically for given
maximum cardinality of carrier sets. The major restriction that was made regarding the
expressiveness is that Alloy provides only relations and sets of basic types. It does not
support higher-order types like set of sets.
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To find solutions to the specified problems, Alloy translates the model to a Boolean
satisfiability problem (SAT) and uses existing SAT solvers to search for valid variable
assignments. The development of SAT solvers have been highly successful and they
have been applied to various domains like analysis of hardware design. Edmund Clark
described the rapid development in his Turing Award paper [CES09]:

Nevertheless, the increase in power of modern SAT solvers over the past 15
years on problems that occur in practice has been phenomenal. It has be-
come the key enabling technology in applications of Model Checking to both
computer hardware and software.

ProB uses a completely different technology — constraint solving with Prolog — to
search for solutions. The basic question that lead to the article presented in Chapter 5
is if and how can we make use of this development. Since Alloy provides already data
structures and logic that are very similar to Z and B’s logic, it is very convenient to
translate problems specified in B to Alloy and re-use the translation from predicates and
relations to Boolean formulas. Alloy’s core functionality that we are interested in (i.e.
specifying carrier sets, variables and a predicate to solve) has been moved in a separate
programming library, called Kodkod [TJ07].

The main problem in such a translation is the limited expressiveness of Alloy resp.
Kodkod. In a B specification, we encounter data types and expressions that cannot be
directly translated. Here we have chosen a very pragmatic approach: A given spec-
ification will be analysed if it contains parts that can be translated. If there are such
translatable parts, the B interpreter calls an external process that interfaces to the Kod-
kod library. ProB sends already known values to the external process and it receives
possible values to the remaining variables that fulfil the translated specification.

The result is that Kodkod and with it SAT solvers will be applied if the structure of a
given problem allows it. If not, ProB uses it existing constraint solving techniques. Thus
the application of Kodkod does not result in limitations of language features that a user
can apply in his specification. But in case it is applicable, it can bring a performance
gain to the analysis which is very specific to the specified problems.

Our approach is not the first one that tries to make use of Alloy for specifications in
Z or similar formal notations [MGL10, MMS08]. The main advantage of our approach
is that it is embedded in an existing tool that provides a “fall back” technique that can
always be applied if the specification contains not supported features. This can make
the difference between a tool that is only usable for a few scenarios or a tool that is a
standard part of the formal development process.

The paper provides more details on how the translation is done, how the interpreter
interacts with the Kodkod library and how some specific problems (like numbers) are
handled.

1.6.1 Significance for Verification and Validation

Unlike the other articles presented in this work, the translation to Kodkod is barely vis-
ible to the user of ProB. The only direct interaction with the new functionality is a pref-
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erence where one can choose if the Kodkod translation should be turned on and off.

Nevertheless, the translation improves ProB’s abilities to support verification and val-
idation by being applicable to specifications where it failed before. Also it improves
ProB’s performance in some cases and thereby it improves the user experience with the
tool.

1.6.2 Affected Parts of ProB

The translation to Kodkod is applied to a part of the specification’s abstract syntax tree.
If the translation succeeds, the part will be replaced by a AST node that describes the
Kodkod representation of the problem. This part happens either in the preprocessing
phase after the type checking or whenever other features like constrained based checks
or the disprover construct an AST to describe the properties of a supposed counter-
example.

The B interpreter is extended with the handling of such a predicate. If the interpreter
encounters a Kodkod translation it looks up known values in the store and sends the
translation and the values to the external Kodkod component. The answer of the exter-
nal component consists of possible values for previously unknown variables. They are
then written back to the store.

1.6.3 Relationship to the Other Articles

Animating Z The article’s work can also directly applied to Z specifications because Z
is translated to the same internal representation in ProB than that is used for B
specifications.

Animation of Refinements Analogously, this translation can be applied to Event-B spec-
ifications. But the algorithm presented for the validation of multiple refinement
levels is not directly affected. Future work might be to develop constraint based
variants of the algorithm such that a predicate is set up that describes the various
errors (e.g. a violation of the guard strengthening proof obligation). Such predi-
cates can then benefit from an application to the Kodkod translation.

LTL model checking The LTL extension and the translation to Kodkod approach indepen-
dent aspects of the validation and verification of formal models.

1.6.4 Future Developments

As pointed out in the article, the translation was only applied to properties (resp. axioms
in Event-B) when trying to find matching values for the constants. At the time of writ-
ing the translation had also be applied to other constraint based search like dead-lock
checking, assertion checking or the disprover.
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1.6.5 Information about the Publication

The article “Validating B, Z and TLA+ using ProB and Kodkod” [PL12] was originally
published in a conference proceedings of the “Lecture Notes in Computer Science” se-
ries, Springer-Verlag.

The work was presented at the conference “FM 2012: 18th International Symposium
on Formal Methods” which took place in Paris, France on August 27–31, 2012. Before
acceptance, all papers of the conference went through a peer review process. The “For-
mal Methods” series of symposia is a distinguished conference in the field of formal
methods.

For the “Lecture Notes in Computer Science” series is no impact factor available.
The paper’s authors are Daniel Plagge and Michael Leuschel.
D. Plagge’s contribution to the article are

• the comparison of B, Z and TLA+ on one side with Kodkod on the other,

• the architecture and details of the translation and

• the execution of the experiments.

M. Leuschel’s contribution to the article are

• the introduction,

• placing the experiments’ outcome in relation to other techniques,

• exploring related work and

• overall advice and help in both the described research and the article itself.
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2 Validating Z Specifications using the

ProB Animator and Model Checker

Daniel Plagge, Michael Leuschel

Abstract. We present the architecture and implementation of the ProZ
tool to validate high-level Z specifications. The tool was integrated
into ProB, by providing a translation of Z into B and by extending the
kernel of ProB to accommodate some new syntax and data types. We
describe the challenge of going from the tool friendly formalism B to
the more specification-oriented formalism Z, and show how many Z
specifications can be systematically translated into B. We describe the
extensions, such as record types and free types, that had to be added to
the kernel to support a large subset of Z. As a side-effect, we provide
a way to animate and model check records in ProB. By incorporat-
ing ProZ into ProB, we have inherited many of the recent extensions
developed for B, such as the integration with CSP or the animation
of recursive functions. Finally, we present a successful industrial ap-
plication, which makes use of this fact, and where ProZ was able to
discover several errors in Z specifications containing higher-order re-
cursive functions.

2.1 Introduction

Both B [Abr96] and Z [ASM80, Spi92] are formal mathematical specification notations,
using the same underlying set theory and predicate calculus. Both formalisms are used
in industry in a range of critical domains.

The Z notation places the emphasis on human-readability of specifications. Z spec-
ifications are often documents where ambiguities in the description of the system are
avoided by supporting the prose with formal statements in Z. LATEX packages such as
fuzz [Spi00] exists to support type setting and checking those documents. The formal
part of a specification mainly consists of schemas which describe different aspects of a
system using set theory and predicate logic. The schema calculus—a distinct feature of
Z—enables system engineers to specify complex systems by combining those schemas.

B was derived from Z by Jean-Raymond Abrial (also the progenitor of Z) with the
aim of enabling tool support. In the process, some aspects of Z were removed and re-
placed, while new features were added (notably the ASCII Abstract Machine Notation).
We will discuss some of the differences later in depth. In a nutshell, B is more aimed
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at refinement and code generation, while Z is a more high-level formalism aimed for
specification. This is, arguably, why B has industrial strength tools, such as Atelier-B
[Ste09] and the B-toolkit [B-C02]. Recently the ProB model checker [LB03] and refine-
ment checker [LB05] have been added to B’s list of tools. Similar tools are lacking for Z,
even though there are recent efforts to provide better tool support for Z [MU05].

In this paper we describe the challenge of developing a Z version of ProB, capable of
animating and model checking realistic Z specifications. We believe an animator and
model checker is a very important ingredient for formal methods; especially if we do
not formally derive code from the specification (as is common in Z [Hal02]). This fact is
also increasingly being realised by industrial users of formal methods.

At the heart of our approach lies a translation of Z specifications into B, with the aim
of providing an integrated tool that is capable to validate both Z and B specifications, as
well as inheriting from recent refinements developed for B (such as the integration with
CSP [BL05]). One motivation for our work comes from an industrial example, which we
also describe in the paper.

2.2 Specifications in Z

First we give a brief introduction to the Z notation. We want to describe the structure
of Z specifications, especially how this differs from specifications in B as supported by
ProB. The interested reader can find a tutorial introduction to Z inside the Z reference
manual [Spi92]. A more comprehensive introduction with many examples is [Jac97].

2.2.1 A brief description of Z

Usually, a specification in Z consists of informal prose together with formal statements.
In a real-life applications, the prose part is at least as important as the formal part, as a
specification has to be read by humans as well as computers.

Usually, one describes state machines in Z, i.e., one defines possible states as well as
operations that can change the state. The Z syntax can be split into two: a notation for
discrete mathematics (set theory and predicate calculus) and a notation for describing
and combining schemas, called the schema calculus.

For illustration, we use the simple database of birthdays (Fig. 2.1) from [Spi92]. The
first line in the example is a declaration [NAME,DATE] which simply introduces NAME
and DATE as new basic types, without providing more information about their attributes
(like generics in some programming languages). We can also see three boxes, each with a
name on the upper border and a horizontal line dividing it into two parts. These boxes
define the so-called schemas. Above the dividing line is the declaration part, where
variables and their types are introduced, and below a list of predicates can be stated.

Without additional description, the purpose of each schema in the example is not
directly apparent. We use the first schema BirthdayBook to define the state space of our
system. Init defines a valid initial state and the schema AddBirthday is the description of
an operation that inserts a new name and birthday into the database.
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[NAME,DATE]

BirthdayBook
known : �NAME
birthday : NAME�DATE

known = dom birthday

Init
BirthdayBook

known = ∅

AddBirthday
ΔBirthdayBook
name? : NAME
date? : DATE

name? /∈ known
birthday′ = birthday ∪

{name? �→ date?}

Figure 2.1: The birthday book example

We describe the schemas in more detail. In BirthdayBook we have two variables: known
is a set of names and birthday is a partial function that maps names to a date. The pred-
icate states that known is the domain of the partial function, i.e., the set of names that
have an entry in the function. A possible state of our system consists of values for these
two variables which satisfy the predicate.

The declaration part of the Init schema contains a reference to the schema BirthdayBook.
This imports all BirthdayBook’s variable declarations and predicates into Init. The predi-
cate says that known is empty. Together with the predicate of BirthdayBook this implicitly
states that the domain of birthday is empty, resulting in an empty function.

The schema defining the operation AddBirthday contains two variables with an ap-
pended question mark. By convention, variables with a trailing ? (resp. !) describe in-
puts (resp. outputs) of operations, thus name? and date? are inputs to the operation. The
first line of the schema is ΔBirthdayBook. This includes all declarations and predicates
of BirthdayBook, as previously seen in Init. Additionally the variable declarations are in-
cluded with a prime appended to their name, representing the state after the execution
of the operation. The predicates are also included a second time where all occurring
variables have a prime appended. To clarify this, we show the expanded schema:

AddBirthday
known, known′ : �NAME
birthday, birthday′ : NAME�DATE
name? : NAME
date? : DATE

known = dom birthday ∧ known′ = dom birthday′
name? /∈ known
birthday′ = birthday ∪ {name? �→ date?}

The schema thus defines the relation between the state before and after executing
the operation AddBirthday. Accordingly the unprimed variables refer to the state before
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Figure 2.2: The birthday book example in B

and the primed ones to the state after the execution. The effect of AddBirthday is that the
function birthday has been extended with a new entry. But, together with the predicates
from BirthdayBook, it is (again implicitly) stated that name? should be added to known.

Instead of the schema boxes there is also a shorter equivalent syntax. E.g., Init can also
be defined with Init =̂ [BirthdayBook | known = ∅ ]. In addition to inclusion, as seen
in the example, the schema calculus of Z provides more operators to combine schemas.
E.g., the conjunction of two schemas R =̂ S1 ∧ S2 merges their declaration part in a
way that the resulting schema R has the variables of both schemas S1 and S2, and its
predicate is the logical conjunction of both original predicates. The schema calculus is a
very important aspect of the Z notation, because it makes Z suitable for describing large
systems by handling distinct parts of it and combining them.

2.2.2 Some differences between Z and B

ProZ is an extension of ProB, a tool that animates specifications in B. To make use of its
core functionality, we need to translate a Z specification into ProB’s internal represen-
tation of a B machine. To illustrate the fundamental issues and problems, we describe
some of the major differences between Z and B using our example.

Figure 2.2 shows the birthday book example as a B machine. Aside from the ASCII
notation, one difference is the use of keywords to divide the specification into multi-
ple sections. The ��������� section defines that 	
��
 and ������� are the variables
making up the state. There is an explicit initialisation and in the ���������� section the
operation ����������� is described. In a Z specification, on the other hand, the purpose
of each schema must be explained in the surrounding prose.

If we look closer at the �������������� section in the example, we see that both 	
��


and ������� are set to ∅. This is unlike the Z schema Init in Fig. 2.2, where only
known = ∅ is stated and the value of birthday is implicitly defined. Also in the def-
inition of the operation ����������� both variables are changed explicitly. Generally
in B all changes to variables must be stated explicitly via generalised substitutions. All
other variables are not changed, whereas in Z every variable can change, as long its
values satisfy the predicates of the operation.

Another noteworthy difference is the declaration of an invariant in the B machine. An
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invariant in B is a constraint that must hold in every state. To prove that a machine is
consistent it has to be proven that the initialisation is valid and that no operation leads to
an invalid state if applied to a valid state. In Z the predicate of the state’s schema is also
called invariant, but unlike B the operations implicitly satisfy it by including the state’s
schema. Errors in a B specification can lead to a violation of the invariant. A similar
error in Z leads to an operation not being enabled, which in turn can lead to deadlocks.

2.2.3 Translating Z to B

The notation of substitutions often results in specifications that are easier to animate
than higher-level Z specifications. Hence, at the heart of ProZ is a systematic translation
of Z schemas into B machines.

Figure 2.3 contains such a B translation of the birthday book Z specification, as com-
puted by our tool (to make the specification more readable we use Z style identifiers,
i.e., ending with ′, ? or !, even though strictly speaking this is not valid B syntax). As can
bee seen, we have identified that the variables birthday and known form part of the state,
their types are declared in the invariant. The initialisation part is a translation of the
expanded Init schema. One operation AddBirthday with two arguments date? and name?
has been identified, a translation of the expanded AddBirthday schema can be found in
the WHERE clause of its ANY statement. There are also several references to a con-
stant maxentries. We added it and a constraint # known ≤ maxentries to demonstrate the
handling of axiomatic definitions (cf. Section 2.3.1).

The B machine from Figure 2.3 can be fed directly into ProB, for animation and model
checking. However, Z has also two data types, free types and schema types, that have no
counterpart in B. This means that some aspects of Z cannot be effectively translated into
B machines, and require extensions of ProB. In the next section we present the overall
architecture of our approach, as well as a formal explanation of how to derive a B model
from a Z specification.

2.3 Architecture and the ProZ compiler

In the previous section we have examined the basic ingredients of Z specifications,
and have highlighted why Z specifications are inherently more difficult to animate and
model check than B specifications. In this and the next section we explain how we have
overcome those issues; in particular:

• How to analyse the various schemas of Z specification, identifying the state of a Z
specification, the state-changing operations and the basic user-defined data types
(cf. Section 2.3.1).

• How to deal with the fact that Z specifications do not specify all changes to vari-
ables explicitly.

• How to deal with the new data types provided by Z.
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Figure 2.3: The translated birthday book example

• How to deal with new operators and constructs.

Overall Architecture ProZ is an extension of ProB that supports Z specifications which
can be parsed by the fuzz typechecker. Those specifications are given as a LATEX file.
When the user loads a specification into ProZ, the following steps are performed (see
also Figure 2.4):

1. The specification is typechecked with fuzz. fuzz writes the formal content of the
specification into a file which then is parsed by ProZ.

2. The different components of the specification (definition of constants, state, ini-
tialisation and operations) are identified.

3. All schemas are expanded and normalised, i.e., all schema inclusions are resolved
and the type declarations of variables are strictly separated from constraints on
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2.3 Architecture and the ProZ compiler

Figure 2.4: Overview of ProZ Architecture

their values.

4. ProZ then translates the specification to an internal representation of a B machine
(with some small extensions, which are discussed later in the paper).

5. After the translation process ProB treats the specification the same way as other B
machines are treated (with some extensions having been added to the ProB ker-
nel).

Most of the expressions in Z have a direct counterpart in B, for those the translation
in point 4 is just a conversion from one syntax into another. Some cases where there is
more logic need in the translation process or where we extended the ProB interpreter
are presented in Section 2.3.3. The support of two Z data types as discussed in the next
section affects the translation process and requires extensions to the kernel as well.

2.3.1 Identifying components of the specification

As we have seen in the previous sections, the purpose of the schemas in a specification
is not stated formally. But to interpret a given specification for animation and model
checking, we must identify which schemas describe the state space, the initialisation
and the operations. To be able to do so, we require that the specification satisfies some
rules:

• There must be a schema called Init for initialisation.

• Init includes exactly one other schema. The included schema will be taken as the
description of the state space.
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2 Validating Z Specifications using the ProB Animator and Model Checker

• A schema with all variables of the state and their primed versions, that is not in-
cluded by any other schema, will be used as an operation.

The rules can be applied to the birthday book example in Fig. 2.1: There is a schema
Init which includes BirthdayBook. Thus Init is the initialisation of the state which consists
of BirthdayBook’s variables known and birthday. Expanding AddBirthday shows that it
has all variables of the state and also the primed versions known′ and birthday′. It is not
included by any other schema. Thus ProZ would identify AddBirthday as an operation.

In the next two paragraphs we present two other components of a specification that
are used by ProZ and explain how they relate to existing features of ProB.

Invariant As seen in the comparison in Sect. 2.2.2, the B invariant has no direct coun-
terpart in Z. But it can be useful to search for states that violate a certain property by
model checking. To make this feature available for Z specifications, ProZ looks for a
schema named Invariant. If such an invariant is given, its predicate is checked for every
visited state in an animation or in model checking. The predicate is then used analo-
gously to the invariant in B.

Axiomatic definitions In our short introduction to Z we did not describe how global
constants can be introduced in Z by axiomatic definitions. Like schemas, axiomatic defi-
nitions consist also of a declaration and a predicate part, but their declared variables can
be used throughout the specification without a schema inclusion. E.g., we can define a
constant maxentries which value is at least 5 with the axiomatic definition

maxentries : �

maxentries ≥ 5

We interpret axiomatic definitions analogously to how ProB interprets the sections CON-
STANTS and PROPERTIES in a B machine: The very first step of an animation or model
checking—before the initialisation of the state variables—consists in finding values for
the constants which satisfy the predicates of the axiomatic definitions. After this step the
predicates of the axiomatic definitions can be ignored. To illustrate how the axiomatic
definitions are handled, we added the definition above to the birthday book example
and appended the predicate # known ≤ maxentries to the schema BirthdayBook before
translating the specification to the result in Figure 2.3.

2.3.2 Translating initialisation and operations from Z to B

The initialisation schema Init consists of the declaration of all state variables and a pred-
icate I. We annotate Tv as the type of variable v.

Init
x1 : Tx1 ; . . . ; xn : Txn

I
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In B, the initialisation is a generalised substitution to all variables of the abstract ma-
chine. We can state “choose any values that satisfy I” with an ANY statement:

ANY x′1, . . . , x′n
WHERE x′1 ∈ Tx1 ∧ . . . ∧ x′n ∈ Txn ∧

I′
THEN x1, . . . , xn := x′1, . . . , x′n

END

Beside the predicate I, the WHERE clause of the ANY contains the type declaration of
the variables. The types Tv and the predicate I are translated from Z to B syntax. Most
of the types, predicates and expressions in Z have a direct counterpart in B and can
be translated directly. In section 2.3.3 we show how we extended the B interpreter to
support other constructs.

An operation schema Op declares in addition to the state variables x1, . . . , xn their
primed counterparts x′1, . . . , x′n and variables for input i1?, . . . , ik? and output o1!, . . . , ol!.
The predicate P describes the effect of the operation.

Op
x1 : Tx1 ; . . . ; xn : Txn

x′1 : Tx1 ; . . . ; x′n : Txn

i1? : Ti1 ; . . . ; ik? : Tik
o1! : To1 ; . . . ; ol! : Tol

P

ProZ translates such a schema to a B operation of the form

o∗1!, . . . , o∗l ! ← Op(i1?, . . . , ik?) =
PRE i1 ∈ Ti1 ∧ . . . ∧ ik ∈ Tik THEN

ANY x′1, . . . , x′n, o1!, . . . , ol!
WHERE x′1 ∈ Tx1 ∧ . . . ∧ x′n ∈ Txn ∧ o1! ∈ To1 ∧ . . . ∧ ol! ∈ Tol ∧

P
THEN x1, . . . , xn, o∗1!, . . . , o∗l ! := x′1, . . . , x′n, o1!, . . . , ol!

END
END

END

Like in the initialisation the central part of the operation is an ANY statement with
the predicate P, but additionally we have to consider the possible result values. The
surrounding PRE statement is just for declaring the types of the operation’s arguments.

Often operations change only a subset of the state variables. ProZ checks if terms like
x = x′ occur in the predicate P. If such a term is found, we know that x does not change
and so we can remove the substitution x := x′. Also we can replace all occurrences
of x′ by x in P. Then x′ is not used anymore in the statement and can be removed. If
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parts of the state or the complete state are not modified by an operation, the expression
θS = θS′ is often used, where S is a schema containing all variables that should not
change. ΞS is an abbreviation for including ΔS and stating θS = θS′. Those expressions
are transformed into s1 = s′1 ∧ . . . ∧ sn = s′m with s1, . . . , sm as the variables of S. This
way the simplification of the ANY statement is also working with θ-expressions.

2.3.3 New constructs and operators

Some constructs of Z’s mathematical language do not have a direct counterpart in B,
and below we show how we have treated those.

Translation of Comprehension Sets A comprehension set has the form {Decl | Pred }
and specifies a set with a declaration of variables and a predicate. E.g., the expression
{ i : � | i ≥ 5 } is the set of all numbers greater or equal to 5. This kind of comprehension
sets is also supported by B, but Z has an extended syntax of the form {Decl | Pred •
Expr }. E.g., the set { i : � | i ≥ 5 • i ∗ i } is the set of all square numbers greater or equal
to 25. We translate such comprehension sets as follows. Let T be the type of Expr, then
we express {Decl | Pred • Expr } by { v : T | (∃Decl | v = Expr ∧ Pred) } and translate
this into B.

Extensions to the B Interpreter The following expressions are not easily translatable
to B (or would entail a considerable efficiency penalty), and hence extensions were made
to the ProB interpreter to support an extended B syntax:

• We added an if -expression to the standard B syntax. While B contains a substitu-
tion IF − THEN − ELSE, it can not be used as an expression that yields a value.
The if expression of Z resembles to the ternary �� operator known in C or Java.

• The let in Z can be used as an expression or as a predicate. Both can not be stated
directly in B, which again only has the LET as a substitution.

• The operations � (extraction) and � (filter) on sequences are defined with the func-
tion squash. We added the squash function to the interpreter.

• We added the definite description quantifier μ.

2.4 New Types

To deal with the Z specifications we have seen so far, it was sufficient to translate Z to
B, possibly with some some syntactic extensions. There are, however, two important
features of Z which cannot be effectively dealt with in that way: Z’s schema and free
types. Supporting those features in an effective manner requires a fundamental addition
to the core datatypes of the ProB kernel.
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Overview of the ProB-kernel The ProB kernel is responsible for storing and finding
values for the values of the variables in a specification. In order to avoid naive enumer-
ation of possible values, the ProB kernel is written in Prolog works in multiple phases
(controlled by Prolog’s ���� co-routining mechanism). In the first phase, only deter-
ministic propagations are performed (e.g., the predicate x = 1 will be evaluated but the
predicates x ∈ �will suspend until they either become deterministic or until the second
phase starts). In the second phase, a restricted class of non-deterministic enumerations
will be performed. For example, the predicate x ∈ {a, b} will suspend during the first
phase but will lead to two solutions x = a and x = b during the second phase. In the final
phase, all variables, parameters and constants that are still undetermined (or partially
determined) are enumerated.

New Data types Adding a new basic data type to the kernel requires the extension of
four Prolog predicates: ����� 	
��� to check two objects for equality, �	 ����� 	
���

to check two objects for disequality, one predicate to type check an object and one pred-
icate to enumerate all possible values of an object given its type. So far the kernel sup-
ported basic user-defined types (defined in B’s SET clause), integers, pairs and sets (re-
lations are represented as sets of pairs). Below, we present two new data types, schema
types and free types, which are needed for Z.

2.4.1 Schema Types

In Z each schema defines a new data type, a schema type which resembles record types
known from other languages. Basically, a record data value rec(f ) consists of a list f =
[n1/v1, . . . ,nk/vk] of field names ni along with values vi for each field. We require that
all field names are sorted alphabetically. Two record values are identical iff they have
the exact same field names and all field values are identical. In the kernel this gives rise
to two new inference rules:

x1 = y1 . . . xk = yk n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) = rec([n1/y1, . . . , nk/yk])

xi �= y 0 ≤ i ≤ k n1 < n2 < . . . < nk

rec([n1/x1, . . . ,ni/xi, . . . ,nk/xk]) �= rec([n1/x1, . . . ,ni/y, . . . ,nk/xk])

The type of a record contains the name of the fields and the types of each field. This
gives rise to two new inference rules for type inference and enumeration, where we use
the k-ary type constructor Record for records with k-fields:

x1 : τ1 . . . xk : τk n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) : Record(n1/τ1, . . . , nk/τk)

x1 ∈ enum(τ1) . . . xk ∈ enum(τk) n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) ∈ enum(Record(n1/τ1, . . . , nk/τk))
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Classical B does not have a record type, but a record type extension and syntax has
been introduced by the tool Atelier-B [Ste09].1 In extending the kernel, ProB now also
supports those records in B.

Note that in Z, possible instances of a schema type (the bindings) can be further con-
strained by the predicates of the schema. E.g. the schema

ExampleRecord =̂ [ x, y : � | x < y ]

can be used as a record with the constraint x < y. The kernel does not support this
directly, instead an unconstrained record [ x, y : � ] can be used. We show how the
constraints can be preserved in the translation process by normalisation.

ProZ normalises all schemas of a specification, i.e. it strictly separates type informa-
tion and additional predicates on the instances. E.g. the normalised form of the schema
[ x : {1, 2, 3} ] is [x : � | x ∈ {1, 2, 3}]. Given a normalised schema A =̂ [Decl | Pred ],
we define A∗ =̂ [Decl ] as the schema with just the type information and without any
additional constraints. If A is used as a type for a variable v, in the normalisation pro-
cess it is split into the type A∗ and the additional constraint v ∈ {Decl | Pred • θA}.
Because the type A∗ does not have further constraints, it’s supported by the kernel. The
constraint had been made explicit by the normalisation and can be translated to B. The
used θ-operator creates an instance of type A. We can translate it directly to a record
constructor.

2.4.2 Free Types

Another feature of the Z notation is the definition of free types. E.g.,

T ::= empty | value�{1, 2, 3}�

defines a new data type T with a constant value empty and a constructor function value
which maps values from {1, 2, 3} to T. Contrary to schema types, free types can also be
recursive, as in the following example, defining a binary tree with integers:

BinTree ::= empty | leaf��� | node�BinTree × �× BinTree�

In Z, free types are only syntactic sugar and can also be expressed with axiomatic def-
initions and basic types. But for the purpose of animating the specification it is essential
for efficiency to implement this type directly.

There is no counterpart for free types in B, so we extended the ProB core. The rep-
resentation of data values and the inference rules for equality and typing are similar
to record types; one just needs to also store the constructor used (e.g., in the case of T
above we need to know whether we are in the case empty or in the case value). Two free
type data values are thus identical iff they have the same constructor and if the values
for that constructor are identical.

1See also [EB02] for a theoretical foundation of records.
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Free type definitions can be made recursive, so the implementation of enumeration
must prevent the generation of infinitely many values. We solved this by introducing a
maximum recursion depth when enumerating free types. The maximum is adjustable
by the user. The introduction of a maximum recursion depth has the effect that the
model checker might not find all possible solutions (similarly to integer variables whose
enumeration is restricted to MININT..MAXINT).

The ProB interpreter is extended by a constructor FreeConstructor for creating instance
values of free types. The arguments are the free type, the case (empty or value in the T
example) and the tuple containing the arguments to the constructor. Also there is the
inverse of the constructor FreeDestructor, which takes a free type instance and returns
the type, the case and the tuple of arguments. Finally, we have a predicate FreeCase that
takes the identifier of a case and a free type instance as arguments and evaluates to true
if the free type value has the given case.

The kernel itself does not support constraints on the values of a constructor. In the
T example above the type of the constructor value is � but the domain constrained to
{1, 2, 3}. Like with the schema types, the constraints have to be handled separately in
the translation. This is done by normalisation as follows.

Given a free type F of the form

F ::= c1 | . . . | cn | d1�S1� | . . . | dm�Sm�

we define the type F∗ which has just the type information of F without other constraints,
where Ti is the underlying type of Si (e.g. Si = {1, 2, 3} ⇒ Ti = �):

F∗ ::= c1 | . . . | cn | d∗1�T1� | . . . | d∗m�Tm�

Then we convert F and the constructors di, 1 ≤ i ≤ m to

F == { x : F∗ |
x ∈ ran d∗1 ⇒ d∗1

∼(x) ∈ S1 ∧ . . . ∧ x ∈ ran d∗m ⇒ d∗m∼(x) ∈ Sm }
di == (λ x : Ti | x ∈ Si • d∗i (x))

The schema normalisation transforms a variable v of type F to a variable of type F∗ and
adds the constraint v ∈ F.

The transformed example would be

T∗ ::= empty | value∗���
T == { x : T∗ | x ∈ ran value∗ ⇒ value∗∼(x) ∈ {1, 2, 3} }
value == (λ x : � | x ∈ {1, 2, 3} • value∗(x))

Finally, expressions of the form x ∈ ran d∗i are translated to the predicate FreeCase(F, d∗i , x)
and constructor calls of the form d∗i (x) are translated to FreeConstructor(F∗, d∗i , x) (resp.
the inverse d∗i

∼(y) is translated to the expression FreeDestructor(F∗, d∗i , y)). The result
can then be dealt with by the extended ProB interpreter and kernel.
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Figure 2.5: An example geometry

2.5 Case study

The case study was inspired by a real industrial example. The specifications are very
high level and, using the guidelines from [Hal90], were not destined to be refined into
code. These Z specifications thus2 provide a particular challenge for our tool. Below we
present two sub-components of the system, the challenges in animating and validating
them, as well as an indication on the errors located by our tool.

2.5.1 Route calculation

The route calculation component is a key component of the overall system, containing
several intricate algorithmic aspects. It is important to ascertain the correctness of the
algorithms (e.g., before proceeding with an implementation).

This system component calculates routes through a given geometry. The geometry
(mainly places and roads) is stored in the system state. The main part of the specifica-
tion consists of the definition of a function that takes a route as input. The input route is
a sequence that starts and ends with a place and between both is a list of places or roads.
The result of the function is the expansion of the route, i.e. the sequence of all places that
lie between the first and the last place. E.g., in the given geometry in figure 2.5 the expan-
sion of 〈Bicester,A34,M4, Swindon〉 is 〈Bicester,Oxford,NewburyRoundabout, Swindon〉. For
sake of simplicity we ignore below the connections which are not roads. The expansion

2Some of the features of B, such as generalised union, are rarely used in formal refinements as the existing
B provers do not support them very well. It is our experience that formal B specifications that are refined
to code are easier to animate than more liberal specifications.
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ExpandElems
ExpandElemexpandElems : Expansion� Expansion

expandElems = {ΔExpansion |
θExpansion′ = if error �= ∅ ∨ currentElem /∈ dom proposedRoute

then θExpansion
else expandElems(expandElem(θExpansion)) •

θExpansion �→ θExpansion′ }

Figure 2.6: Example: The recursive definition of the function expandElems.

function is constructed by combining several other functions, which do not work di-
rectly on the input route. Instead a record is created that contains the original route,
information about which part has already been processed, the result so far, and a set
of errors. An error could be “no connection found”, for example. A recursive function
(Fig. 2.6) expands every single element in the route until the complete route is expanded
or an error is found. In total the specification consists of 8 function definitions which are
combined to calculate the result. Most of these functions are defined by comprehension
sets.

Due to the complexity of the defined functions, it was not feasible to enumerate them
(i.e., to store all possible inputs and outputs). Fortunately, ProB [LCB09] has the ability
to compile these kind of definitions into symbolic closures, which are evaluated and ex-
panded on demand. For example, given a set comprehension S = {x | x ∈ � ⇒ P} and
the condition y ∈ S the Kernel will “only” check that P holds for x = y and not compute
the entire set S. A similar situation arises for lambda abstractions. Take for example,
f = λ x.(x ∈ � • E). In that case, to evaluate f (y) the Kernel “only” evaluates E with
y substituted for x and not the entire function f .3 The kernel, even supports recursive
function definitions, such as the one presented in Fig. 2.6.

Storing comprehensions sets and λ-expressions symbolically was an essential feature
to allow the animation of the specification. By integrating ProZ into ProB we inherit this
feature, which allows us to validate this specification.

To make an animation possible, the system was initialised with test data that describes
a map with six cities. Running the animation the user can simply click on the AddElement
operations to construct an input and sees immediately the result. Figure 2.7 shows a
screenshot of the animator after entering the route “Newbury→A34→ Bicester”. In the
middle the list of enabled operations can be seen where the Expand operation contains
the solution (which is truncated in the screenshot).

The animation of the specification quickly exhibited one error in the specification. For
each road a sequence of places to which it connects is stored in the geometry. When a
route contains a road, the entry and exit points are calculated and the section between
both is appended to the result. But under certain circumstances the section was ap-
pended in the wrong direction so that the route “Newbury → A34 → Bicester” was

3 Some expressions, however, will require the computation of the entire function (e.g., dom(f ) ⊆ SetA). In
those circumstances the kernel converts the symbolic form into explicit form.
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Figure 2.7: Animation of the route calculation

calculated to “Newbury → Bicester → Oxford → Newbury → Bicester” instead of the
much simpler correct solution “Newbury → Oxford → Bicester”.

Figure 2.8 shows the function containing the error. The result of the expression (in
the third let expression)

(if entry > exit then exit . . entry else entry . . exit) � roadPlaces(r)

are all places on the road r that are between entry and exit. If roadPlaces(r) is the sequence
〈a, b, c, d, e〉, entry is 4 and exit is 2, than the result is 〈b, c, d〉. Although the case entry >
exit is covered explicitly in the specification, it has been forgotten to reverse the resulting
sequence to 〈d, c, b〉.

For this application we did not yet use the model checking facilities of ProZ, because
we have no further properties about the result of the algorithm (and hence no way to
automatically check the correctness of the result). But the animator alone gives the user
a powerful tool to get more insight in the behaviour of a specification, as the quick de-
tection of errors showed.

2.5.2 Network protocol

A second important component of the overall system implements access control to a
shared resource, employing a simple network protocol. A number of workstations are
connected via a network and share are critical resource. Whenever a workstation wants
to access the resource it has to send a request to the other workstations. The protocol
should assure that only one workstation can be in the critical section at the same time.

The specification distinguishes between the state and behaviour of the workstations
and the the state and behaviour of the underlying middleware.

The specification of the middleware is the description of an existing system. Its state
space consists of a sent and received buffer for each workstation. Messages can be added
to a sent buffer, transferred between workstations and removed from a received buffer
to deliver it to the workstation.
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2.5 Case study

ExpandRoad
FindConnections
expandRoad : Expansion� Expansion

expandRoad = {r : ElementName; ExpansionOp |
r ∈ RoadName ∧
(proposedRoute(currentElem)).type = roadElementType ∧
(proposedRoute(currentElem)).name = r ∧
(let entries == findConnections(r, proposedRoute(currentElem − 1));

exits == findConnections(r, proposedRoute(currentElem + 1)) •
((entries = ∅ ∨ exits = ∅)
∧ error′ = {noConnection} ∧ expandedRoute′ = 〈〉) ∨

(let entry == min(entries); exit == min(exits) •
(let placesToAdd == (if entry > exit then exit . . entry

else entry . . exit) � roadPlaces(r) � place •
expandedRoute′ = if last expandedRoute = head placesToAdd

then expandedRoute � tail placesToAdd
else expandedRoute � placesToAdd ∧
error′ = ∅))) •

θExpansion �→ θExpansion′}

Figure 2.8: The definition of the function expandRoad containing an error.

The specification of the workstation defines their current states (idle, waiting, editing
or failed) and their operations. They can send requests to the other workstations, read
their responses, read other requests and send responses.

The components from both parts of the definitions are combined by using the schema
calculus. Especially the pipe operator (>>) was used to connect operations, where the
result of one operation serves as the input for another operation. E.g. when a work-
station sends a request, the operation describing the workstation behaviour outputs a
message that is taken by a middleware operation as input:

RequestOK =̂ RequestWorkstationOK >> AcceptMsgMiddleware

A screenshot of the animator is shown in Fig. 2.9. On the left side the current state is
displayed. It can be seen that workstation 1 is waiting for a response of workstation 2,
workstation 2 is in editing mode and workstation 3 is idle. Also a message is still in the
sent buffer of workstation 1.

Free types are used in the specification for distinguishing the different modes of a
workstation. wsIdle and wsEditing are constants of the free type, whereas wsWaiting is a
constructor, e.g. wsWaiting({1, 3}) refers to the state “waiting for workstations 1 and 3”.

First we used the model checker to find deadlocks in the protocol. It found a dead-
lock that was caused by an error in the specification. It was possible that a workstation
could ignore a rejected request. The same error caused a situation where more than one
workstation was in the critical section.
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Figure 2.9: Animation of the network protocol

We added an Invariant schema to the specification to check automatically if more than
one workstation is in the editing mode (wsState is a function defined in the schema
Workstations that maps each workstation to its mode, and the operator � is used to re-
strict it to all entries which map to wsEditing):

Invariant =̂ [Workstations | #(wsState � {wsEditing}) ≤ 1 ]

The model checker was able to find states where the invariant was violated. Another
error was found: Every response to a request was treated as if it was a grant, even rejec-
tions.

The model checker was not able to do an exhaustive search of the state space because
the message buffers in the model are not limited.

2.6 Discussion, Related and Future Work

Limitations Z is a very large and extensive formal method, with many features and
extension. While we provide a tool that can animate a considerable subset of Z, some of
Z’s features are obviously not yet supported:

• Bags (multisets) are not supported.

• Some expressions like disjoint and partition are not yet implemented.

• Generic definitions cannot be used in a specification yet. We plan to support them
by determining with wich types a generic definition is used, and then creating for
each such type a separate axiomatic definition.

Related and Future Work On the theoretical side, there are several works discussing
the relationship and translations between Z and B [Dun04] or weakest precondition se-
mantics [CW98].

On the practical side, several animators for Z exist, such as [WDK98], which presents
an animator for Z implemented in Mercury, as well as the Possum animation tool [HST98].
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Another animator for Z is ZANS [Jia95]. It has been developed in C++ and unlike ProB
only supports deterministic operations (called explicit in [Jia95]). The more recent Jaza
tool by Mark Utting [Utt00] looks very promising. There has also been a recent push
[MU05] to provide more tool support for Z. However, to our knowledge, no existing Z
animator can deal with the recursive higher-order functions present in our case study.

The most closely related work on the B side is [BLP02, ABC+02, LPU02], which uses
a special purpose constraint solver over sets (CLPS) to animate B and Z specifications
using the so-called BZ-Testing-Tools. However, the focus of these tools is test-case gener-
ation and not verification, and the subset of B that is supported is comparatively smaller
(e.g., no set comprehensions or lambda abstractions, constants and properties nor mul-
tiple machines are supported).

Another very popular tool for validating specifications and models is Alloy [Jac02],
which makes use SAT solvers (rather than constraint solving). However, the specifica-
tion language of Alloy is first-order and thus cannot be applied “out of the box” to our
motivating industrial example.

Conclusion In this paper we presented ProZ, a tool for animating and model check-
ing Z specifications. We pursued an approach to translate Z specifications to B, reusing
the existing ProB toolset as much as possible. Some extensions to the ProB core were
required (e.g., for free types and schema types), after which we have obtained an in-
tegrated tool that is now capable to animate and validate Z and B specifications. In
principle our tool could now validate combined B/Z specifications,4 and as a side effect
we have added support for B specifications with records. By integrating ProZ with ProB
our tool has also inherited from the recent developments and improvements originally
devised for B, such as visualisation of large state spaces [LT05], integration with CSP
[BL05], symmetry reduction [LBST07], and symbolic validation of recursive functions
[LCB09].

Our tool was successfully applied to examples which were based on industrial spec-
ifications and also revealed several errors. Especially ProZ’s ability to store compre-
hensions sets symbolically was essential to make the animations of those specifications
possible.

Acknowledgements We would like to thank Anthony Hall for his very helpful contributions

and feedback on the paper.

4It is not clear to us whether this has any practical benefit
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3 Validation of Formal Models by

Refinement Animation

Stefan Hallerstede, Michael Leuschel, Daniel Plagge

Abstract. We provide a detailed description of refinement in Event-B,
both as a contribution in itself and as a foundation for the approach to
simultaneous animation of multiple levels of refinement that we pro-
pose. We present an algorithm for simultaneous multi-level animation
of refinement, and show how it can be used to detect a variety of errors
that occur frequently when using refinement. The algorithm has been
implemented in ProB and we applied it to several case studies, show-
ing that multi-level animation is tractable also on larger models. We
present empirical results and discuss how the algorithm can be com-
bined with symmetry reduction.
Keywords: Refinement – Model Checking – Constraint-Solving –

Tools – Industrial Applications – Event-B

3.1 Introduction and Motivation

We consider formal modelling of software systems an important phase in the develop-
ment process. It permits us to reason about the system to be developed early on in the
development using abstractions of the system. We believe that this reasoning is a key
to improving the quality of the developed software. The approach to reasoning varies
depending on what kind of problems one wants to uncover. It can reach from formal
proof to just “trying out” a model. We expect to benefit from this by improving our
understanding of a system (by analysing models of it) and by creating an adequate for-
mal model that can serve as the reference for what is to be considered “correct” in later
stages of the development process. As much as possible reasoning should be supported
by a software tool. The work presented in this article is based on the Event-B modelling
method [Abr10] and the complementing software tool Rodin [ABH06]. The core of the
Rodin tool provides automatic generation of proof obligations that can be analysed to
gain insight into a formal model. Often proof obligations give good indications of how
to make an improvement in case of inconsistencies in a model. However, there are also
many occasions where proof obligations do not point directly to a problem or where a
model does not contain inconsistencies but is still “incorrect” (see, e.g., the Earley parser
example discussed in [BLLS08]). In many such cases animation is an useful tool to gain
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further insight into a model. The Rodin plugins ProB [LB03, LB08], Brama1 [Ser07], and
AnimB [Ani] provide animation facilities for Event-B.

When dealing with complex models, refinement can be used to introduce the many
details gradually, achieving a reduced complexity at each refinement level. Proof obli-
gations, once discharged, demonstrate correctness of a refinement: the more detailed
model behaves within the limits set by the more abstract model. However, it can be
difficult to analyse a refinement relationship only by means of associated proof obliga-
tions. Animation can be used to complement proof as a method of validation providing
a broader view on the properties of formal models. All three animation plugins men-
tioned above provide some means to animate refinements. In this article we investigate
their relative capabilities and how to advance refinement animation in order to turn it
into a tool for refinement validation. This serves as a blueprint for the evolution of ProB
in terms of animation support.

Before starting the investigation we should be clear about the objectives of animation
when used for validation. What is the purpose of animating a model across multiple
levels of refinement? In Event-B several concepts play a role in refinement. Most promi-
nently, these are invariants, guards, actions, and witnesses. If a refinement fails, any
combination of those concepts may be involved. Animation should help to locate the
cause of a problem in the model, pointing to specific invariants, guards, and so on, if
possible. However, even if a refinement is formally correct, there can still be problems
with the model. This concerns, in particular, properties that have not been formalised.
Animation should make it easy to experiment with a model, visualising potential prob-
lems. We try to integrate this aspect of animation with the first one as far as possible.
Otherwise consistent tool support for both would be difficult to realise.

In Section 3.2 we introduce the Event-B notation (using the syntax of the Event-B text
editor “Camille” [BFL10]) and give a concise description of the fundamentals of Event-
B refinement. As far as we are aware there is no single place where all the essential
aspects are described and motivated in such detail. All of this is needed in order to
present the basic refinement-animation algorithm in Section 3.3. The presentation of
the algorithm is interspersed with methodical remarks on validation. In Section 3.4 we
present some concrete examples on how to use ProB for refinement validation and some
brief description of case studies to which it has been applied. Finally, Sections 3.6 and 3.7
contain a discussion of related work and a conclusion.

3.2 Modelling and Refinement in Event-B

Event-B can be used to model complex intricate systems. To understand the system and
the model of the system we need to reason thoroughly about the model. Such reasoning
is the principal purpose of Event-B. The basic concepts of Event-B are characterised by
means of proof obligations; they are the core of the Event-B method. However, they are
not an exclusive means of reasoning. Based on an operational interpretation of a model

1Brama requires an older version (0.9.2.x) of Rodin at the time of writing.
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we can also animate the model to gain deeper understanding. In this section we parallel
the presentation of Event-B proof obligations, in particular, refinement, with ideas of
animation. This demonstrates well how animation complements proof. Because there
is no single software tool for animation that provides all that is needed, we use the three
tools ProB, Brama, and AnimB at the same time.

3.2.1 Contexts

Event-B models are described in terms of the two basic constructs: contexts and ma-
chines. Contexts specify static parts of a model, that is, carrier sets and constants that are
constrained by axioms, introduced by the keywords ����, ���������, and ��	�
�, as shown
in Fig. 3.1. Usually, axioms are quite simple formulas; contexts are intended to be used

������� CofCtxt
��������� full empty half level
���� FILL
��	�
�

@Ffhe partition(FILL, {full }, {half }, {empty })
@lvl level = (0 . . 2× {empty }) ∪ (3 . . 7× {half }) ∪ (8 . . 11× {full })

���

Figure 3.1: Context of coffee dispenser model

to parameterise machines. We mention contexts here mainly because of the role they
play in animation. For any particular animation specific values for all constants have to
be found. ProB does this automatically using constraint-solving techniques for finding
proper values that satisfy all axioms. The constraint-solving also determines whether
the axioms contain a contradiction. In order to use carrier sets, constants, and axioms of
a context in a machine, the context needs to be referenced in the machine: the machine
sees the context. For instance, in Fig. 3.3 machine CoffeeM sees context CofCtxt. Contexts
are described in more detail in [Abr10, AH07].

3.2.2 Notation for Variables and Substitutions

We follow the style of [Abr10] of expressing variables and substitution in formulas. Let
v = v1, . . . , vn be a sequence of n distinct variables, t = t1, . . . , tn a sequence of n formulas
and F a formula. Then F[t/v] is obtained from F by replacing simultaneously all free
occurrences of each vi by ti.

We let F(v) denote a formula, whose free variables are among v1, . . . , vn. Once the
formula F(v) has been introduced, we denote by F(t) the formula F[t/v] with v replaced
by t. By v′ we denote the variables v′1, . . . , v′n, used for naming after-states of state tran-
sitions. For (disjoint) variable sequences v and w we denote their concatenation by v,w.
These notions could also be used with Event-B constants. But we do not do this in this
article where we focus on refinement relationships and consequently on variables.
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3.2.3 Machines

Machines provide behavioural properties of Event-B models. Machines may contain vari-
ables, invariants, events, and variants. Variables v define the state of a machine. They are
constrained by invariants I(v). Possible state changes are described by means of events.
Each event is composed of a guard G(t, v) and an action S(t, v), where t are parameters of
the event. The guard states the necessary condition under which an event may occur,
and the action describes how the state variables evolve when the event occurs. We de-
note an event E(v) by one of the forms shown in Fig. 3.2. Form (b) is used if event E(v)

any t when
G(t, v)

then
S(t, v)

end

(a) Event (general form)

when
G(v)

then
S(v)

end

(b) Event without parameters

begin
S(v)

end

(c) Event without parameters

or guard

Figure 3.2: Syntax of events
does not have parameters, and form (c) if in addition the guard equals true. A dedicated
event of the third form is used for INITIALISATION. In the formal exposition below, we
assume without loss of generality that the most general first form is used.

The action of an event is composed of assignments of the form: x := E(t, v) or x :∈
E(t, v) or x :| Q(t, v, x′), where x is some or all of the variables v, E(t, v) expressions, and
Q(t, v, x′) a predicate. The second form assigns x to an element of a set, and the third
form assigns to x a value satisfying a predicate. The first two can be formally defined
in terms of the third form: x := E(t, v) =̂ x :| x′ = E(t, v) and x :∈ E(t, v) =̂ x :| x′ ∈
E(t, v). The effect of an assignment is described by a before-after predicate:

before-after predicate of “x :| Q(t, v, x′)” =̂ Q(t, v, x′)

A before-after predicate describes the relationship between the state just before an as-
signment has occurred, x, and the state just after the assignment has occurred, x′. All
assignments of an action S(t, v) occur simultaneously which is expressed by conjoining
their before-after predicates, yielding a predicate A(t, v, x′). Variables y that do not ap-
pear on the left-hand side of an assignment of an action are not changed by the action.
Formally, this is achieved by conjoining A(t, v, x′) with y′ = y, yielding the predicate

S(t, v, v′) =̂ A(t, v, x′) ∧ y′ = y .

Running Example

We use the coffee dispenser model in Fig. 3.3 (with the context shown in Fig. 3.1) and
Fig. 3.19 for illustration of refinement-animation. In the abstract machine CoffeeM the
dispenser can fill a mug half or fully; the state of the mug is represented by the variable
alvl (abstract level). As a special service the dispenser can also drink the coffee.
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������� CoffeeM ���� CofCtxt
	�
������ alvl
��	�
����

@inv1 alvl ∈ FILL
	�
��� ({full �→ 2, half �→ 1, empty �→ 0})(alvl)
�	���

�	�� INITIALISATION
�����

@mf alvl := empty
���

�	�� fill mug
��� x ����

@g0 alvl = empty
@g1 x �= alvl

���

@a1 alvl := x
���

���	�
��� �	�� drink
����

@g1 alvl �= empty
���

@a1 alvl :∈ {empty, half} \ {alvl}
���

���

(a) Coffee dispenser machine

(b) State space for CoffeeM (with additional mugshots)

Figure 3.3: Coffee dispenser model

In the first refined machine CoffeeR1 a feature is introduced for inserting an arbitrary
number of coins into the dispenser. A coin is consumed each time a mug is filled. In the
second refined machine CoffeeR2, the number of coins maximally accepted is limited and
the amount of coffee contained in a mug is represented numerically by a the variable
clvl (concrete level).

Animation in ProB

The before-after predicate can be used to compute the state space of a machine, a graph
where each node represents a state of the machine and each arc the execution of an
event. Fig. 3.3b contains the state space of the CoffeeM (Fig. 3.3a), as computed by the
ProB tool. The triangle represent a special root node, where the variables and constants
of a machine have not yet been set. An animator lets the user navigate the state space by
choosing the events to be fired. A model checker will systematically explore the state
space, looking for various errors in the machine.
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3.2.4 Machine Consistency

Invariants are supposed to hold initially and whenever variable values are changed by
an event. Obviously, this does not hold a priori and, thus, needs to be proved. The
corresponding proof obligation for every event is called invariant preservation, formally,

I(v) ∧ G(t, v) ∧ S(t, v, v′) ⇒ I(v′) . (3.1)

For the INITIALISATION of a machine there is a special form of this proof obligation,
without invariant and guard in the hypothesis. By proving action feasibility for an event,

I(v) ∧ G(t, v) ⇒ (∃ v′ · S(t, v, v′)) ,

as well, we achieve that S(t, v, v′) provides an after state whenever G(t, v) holds. This
means that the guard indeed represents the enabling condition of the event. For the INI-
TIALISATION action feasibility is just (∃ v′ · S(t, v, v′)) because it does not have a guard
and the invariant cannot be assumed to hold before initialisation of a machine.

Enabledness

We can prove that machine M is deadlock-free, that is, always some event is enabled to
occur. Let E1(v), E2(v), . . ., En(v) be the events of machine M without INITIALISATION,
with parameter lists t1, t2, . . . , tn, and guards G1(t1, v), G2(t2, v), . . ., Gn(tn, v). Machine
M is deadlock-free if some choice of parameter values makes one of the guards of the
events true:

I(v) ⇒ (∃ t1 · G1(t1, v)) ∨ (∃ t2 · G2(t2, v)) ∨ . . . ∨ (∃ tn · Gn(tn, v))

The Rodin tool does not support enabledness proof obligations at the moment. But ProB
supports analysis of liveness properties and animation can show a deadlock (where all
events except for the initialisation are disabled).

3.2.5 Machine Refinement

A machine N can refine at most one other machine M. We call M the abstract machine
and N a concrete machine. The state of the abstract machine is related to the state of the
concrete machine by a gluing invariant J(v,w) associated with the concrete machine N,
where v are the variables of the abstract machine and w the variables of the concrete
machine. The restriction that there is at most one abstract machine to a concrete ma-
chine permits us to store the gluing invariant J(v,w) in the concrete machine. The full
invariant of the concrete machine is the conjunction of the (full) invariant of the abstract
machine and the gluing invariant. The invariants are accumulated during refinements.
In particular, they are immediately available as hypotheses in proofs.

We call events of an abstract machine abstract events and those of a concrete machine
concrete events. Abstract events are refined by concrete events. Each abstract event must
be refined by at least one concrete event. The most common case is an abstract event
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����� E(v)
any

t
when

G(t, v)
then

S(t, v)
end

����� F(w) ������ E(v)
any

u
when

H(u,w)
with

W(t, v′, u, v,w,w′)
then

T(u,w)
end

(a) Abstract event E(v) (b) Concrete event F(w)

Figure 3.4: Event refinement

E(v) refined by one concrete event F(w). Let abstract event E(v) and concrete event F(w)
be as specified in Fig. 3.4. Informally, concrete event F(w) refines abstract event E(v) if,
whenever the gluing invariant J(v,w) is true,

1. the guard of F(w) is stronger than the guard of E(v), and

2. for every possible execution of F(w) there is a corresponding execution of E(v)
which simulates F(w) such that the gluing invariant remains true after execution
of both events.

Superposition refinement [Bac89] is supported explicitly by way of extending events.
For instance, in Fig. 3.19 some events carry the attribute �����	�. This means that all
parameters, guards, and actions are copied literally from the abstract event. Note that
the event F(w) contains one more component W(t, v′, u, v,w,w′) following the keyword

���, called the witnesses. We return to its role in Section 3.2.7 below.

An event can be split in a refinement. This happens if more than one concrete event re-
fines abstract event E(v). A concrete event can also merge several abstract events into one
concrete event. This is only permitted if the parameters of the merged abstract events
agree on their types and their actions are identical. The latter restrictions have been in-
troduced in order to keep the associated proof obligations simple. It is not possible for
such a concrete event to extend the merged abstract events.

Refinement Animation

To check whether the guard of a concrete event is stronger, we also need to animate the
corresponding abstract machine. Fig. 3.5a shows a graphical visualisation (created with
Brama) of an animation of the coffee dispenser model described earlier.2 White boxes
signal enabled events, grey boxes disabled events. As can be seen, all the refinement

2The drawing corresponds to the output generated by Brama. The original screenshot can be found in
[HLP10].
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INITIALISATION

fill_mug

drink

insert_coin

CoffeeR2 CoffeeR1 CoffeeM

INITIALISATION

fill_mug

drink

insert_coin

INITIALISATION

fill_mug

drink

(a) in Brama (b) Improved

Figure 3.5: Coffee dispenser refinement animation

levels are animated concurrently. Brama’s representation also shows at a glance that
whenever a refined event is enabled, then all of its ancestor events are also enabled.

The view underlying Fig. 3.5a is operational. It focuses solely on event execution. If
we wanted to use it for analysing a formal model, we would need to add information. In
particular, information about gluing invariants would be useful (Fig. 3.5b). For instance,
it could be shown which event could violate the invariant. We have indicated more
information that could be provided by the icons used in Fig. 3.5b: the icon “ ” indicates
that an event is enabled; the icon “ ” indicates that an event is not enabled; the icon “ ”
indicates that a convergent event decreases the variant; the icon “ ” indicates that an
anticipated event does not increase the variant. Note, that this is not a purely cosmetic
change: the animator must supply all necessary information.

3.2.6 Common Variables and Common Parameters

As far as animation and model checking are concerned, refinement introduces a new
challenge: we no longer have just a single machine that needs to be animated as in
Fig. 3.3b, but a series of machines, each with its own state.3

In order to check the gluing invariant, we need to access variables from various ma-
chines. This raises a new issue. In Section 3.2.5 we have simply assumed that all vari-
ables v are refined by new variables w, and all parameters t are refined by new param-
eters u. The variables v and parameters t “disappear” in the refinement. In practice,
variables and parameters can be repeated in a refinement. Abstract machines and con-
crete machines can have variables in common, and abstract events and concrete events
parameters. By convention, when repeating variables and parameters abstract and con-
crete counterparts are assumed to be equal.4

3Earlier versions of ProB avoided this problem by animating each refinement level separately, at the cost
of not being able to check the gluing invariant and of less user feedback.

4Once a variable has disappeared in the course of several refinements it cannot reappear. The reason for
this is that the equality cannot be established by means of a machine that does not contain the variable.
Furthermore, invariants are accumulated in Event-B. So it is not possible to reintroduce a variable with
a different meaning.
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3.2 Modelling and Refinement in Event-B

Animation

For refinement animation of machines this means that we have basically two options:
first, variables must be renamed in each machine and gluing invariants generated. This
approach would allow us to visualise machines with deviating behaviour. A second
approach would be to treat repeated variables internally as one, but we must ensure
that the algorithm will still detect the errors and find a way to visualise them. After
presenting the algorithm, we will explain in detail in Section 3.3.2 why we opt for the
latter.

Figure 3.6: ProB operations and state view after the trace insert coin, fill mug, drink

Example

In the running example the machine CoffeeM of Fig. 3.3a and its refinement CoffeeR1 of
Fig. 3.19a have the variable alvl in common. Fig. 3.6 shows ProB animating the Coffee
example. As can be seen in the newly developed hierarchical “State View”, the variable
alvl occurs twice, once in CoffeeM and once in CoffeeR1. We can also see that the variable
alvl disappears in the refinement CoffeeR2. In Fig. 3.7 we show how the AnimB animator
displays a state of multiple refinement-levels; each refinement level is given its own tab.

3.2.7 Refined Events and Witnesses

The predicate W(t, v′, u, v,w,w′) denotes witnesses. Somewhat simplified, they link the
abstract parameters t and the abstract variables v′ to concrete parameters u and vari-
ables and w′ (see also Fig. 3.9). Witnesses describe for each event separately how the
refinement is achieved. Let K(u, v,w,w′) =̂ I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′).

We discuss splitting of events in more detail and comment below on the differences
with merging events in a refinement. The proof obligations for concrete events are called
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3 Validation of Formal Models by Refinement Animation

Figure 3.7: AnimB view after insert coin,insert coin, fill mug, drink

guard strengthening:

K(u, v,w,w′) ∧ W(t, v′, u, v,w,w′) ⇒ G(t, v) , (3.2)

action simulation:

K(u, v,w,w′) ∧ W(t, v′, u, v,w,w′) ⇒ S(t, v, v′) , (3.3)

and invariant preservation:

K(u, v,w,w′) ∧ W(t, v′, u, v,w,w′) ⇒ J(v′,w′) . (3.4)

We have to prove witness feasibility in order to be able to add the witness predicate
W(t, v′, u, v,w,w′) to the premises in the proof obligations above:

K(u, v,w,w′) ⇒ (∃ t, v′ · W(t, v′, u, v,w,w′)) . (3.5)

In general, witnesses would be required for all parameters p of an event but when a
parameter is repeated in a refined event, by convention, it is assumed to be equal to the
corresponding abstract parameter. If a parameter is not repeated an explicit witness is
required. (The Rodin tool creates the default witness “true” if none is specified in the lat-
ter case. This witness does not constrain the relationship between abstract and concrete
parameters and variables. Hence, usually default witnesses are not sufficient to estab-
lish the refinement relationship.) For variables the rule when witnesses are needed is
more complicated: whenever a variable x that disappears occurs in a non-deterministic
assignment in the abstract event, in the refined event a witness for the post-state variable
v′ is required.

Aside. As described in [AH07], in order to verify that F(w) refines E(v) we have to
prove

I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′) ⇒ ∃ t, v′ · G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′) .
(3.6)

62



3.2 Modelling and Refinement in Event-B

In a proof of this statement we prefer to instantiate the existentially quantified parame-
ters t and variables v′ by expressions that can in some way be inferred from the premises.
This idea is generalised to the witnesses used in Event-B. Witnesses are predicates that
provide values to satisfy the existentially quantified conclusion of the statement.

Refinement according to (3.6) is established by proof obligations (3.2) to (3.5):

(3.2) ∧ (3.3) ∧ (3.4)

⇒ { predicate logic }
K(u, v,w,w′) ∧ W(t, u, v, v′,w,w′) ⇒ G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′)

⇒ { instantiate t, v′ := t, v′ in goal }
K(u, v,w,w′) ∧ W(t, u, v, v′,w,w′) ⇒ ∃ t, v′ · G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′)

⇒ { t and v′ not free in K(u, v,w,w′) }
K(u, v,w,w′) ∧ (∃ t, v′ · W(t, u, v, v′,w,w′)) ⇒ ∃ t, v′ · G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′)

⇒ { by (3.5) }
(3.6)

Aside. Two or more events can be merged in a refinement. In this case some restric-
tions apply for the abstract events being merged. Figure 3.8 shows a concrete event F(w)
that merges two abstract events E1(v) and E2(v). (It can be easily generalised to any fi-
nite number of merged events.) Merging of E1(v) and E2(v) is only defined if identically

����� E1(v)
any

t1
when

G1(t1, v)
then

S1(t1, v)
end

����� E2(v)
any

t2
when

G2(t2, v)
then

S2(t2, v)
end

����� F(w) ������ E1(v) E2(v)
any

u
when

H(u,w)
with

W(t1∪t2, v′, u, v,w,w′)
then

T(u,w)
end

(a) Abstract events E1(v) and E2(v) (b) Concrete event F(w) merging E1(v)
and E2(v)

Figure 3.8: Merging two events
named parameters of t1 and t2 have identical types and the actions S1(t1, v) and S2(t2, v)
are identical. Term t1∪t2 denotes the “union” of the parameter lists t1 and t2. Due to
the restrictions we have imposed on the abstract events, only the guard strengthening
proof obligation needs to be adapted to the merging case (with K(u, v,w,w′) as defined
above):

K(u, v,w,w′) ∧ W(t1∪t2, v′, u, v,w,w′) ⇒ G1(t1, v) ∨ G2(t2, v) .

Merging does not pose new challenges for animation, hence, we do not discuss it when
presenting the animation algorithm. The brief presentation of event merging given here
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3 Validation of Formal Models by Refinement Animation

should suffice as evidence for this claim (and as justification for the omission of event
merging in Section 3.3).

Example

Event fill mug in CoffeeR2 contains the witness x = level(clvl′) for the abstract parameter x
of fill mug in CoffeeR1. This means intuitively, that every execution of fill mug in CoffeeR2
corresponds to an execution of fill mug in CoffeeR1 with parameter x set to level(clvl′).
Event fill mug in CoffeeR1 must be enabled for x = level(clvl′) and the gluing invariant
alvl = level(clvl) must hold after executing the abstract and concrete event. Similarly,
drink in CoffeeR2 contains a witness alvl′ = level(clvl′) for the abstract variable alvl. (Note,
that it is just invariant @lvl in Fig. 3.19b with all variables primed.)

Figure 3.9: Witnesses and multi-level animation

Animation in ProB

Witnesses are the key concept that makes refinement animation possible. Indeed, (trace)
refinement animation and refinement checking in classical B (see Section 3.5) require for
every concrete state to keep track of the set of all abstract states for which the gluing in-
variant holds. Only if this set becomes empty, have we found an error in the refinement.
The size of state space necessary for simulation grows exponentially. In Event-B, by con-
trast, the witnesses pinpoint the states which have to satisfy the refinement relationship
(see Fig. 3.9).
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3.2 Modelling and Refinement in Event-B

3.2.8 New Events, Convergence, and Anticipation

In the course of refinement, often new events F(w) are introduced into a model. New
events must be proved to refine the implicit abstract event “skip” that does nothing and
is always enabled, that is, we have to prove invariant preservation:

K(u, v,w,w′) ⇒ J(v,w′) .

Moreover, it may be proved that new events do not collectively diverge. This is done by
means of convergence and anticipation. Convergence is verified by proving that a specified
variant Y(w) is bounded from below:

I(v) ∧ J(v,w) ∧ H(u,w) ⇒ Y(w) ≥ 0

and is decreased by each new event

I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′) ⇒ Y(w′) < Y(w) (3.7)

where we assume that the variant is an integer expression. (Instead of an integer ex-
pression also a finite set expression can be used.) We call events that satisfy these two
proof obligations convergent.

An event is anticipated (to be convergent) if instead of (3.7) it satisfies the weaker con-
dition (3.8):

I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′) ⇒ Y(w′) ≤ Y(w) . (3.8)

Anticipated events can be used to prove convergence on a lexicographic order [ACM05]
or just to delay convergence proofs [Hal09b]. Anticipated events can be refined by an-
ticipated or convergent events, but must ultimately be refined by a convergent event.
Convergent events can only be refined by convergent events, that is, they stay conver-
gent. Fig. 3.10 shows a typical scenario of the use of convergent and anticipated events.5

“Ordinary” events (events that are neither convergent nor anticipated) are shown as
boxes , anticipated events as ellipses , and convergent events as bold ellipses .
The new event E2 in machine M2 is convergent and stays convergent in machines M3

to M5. The new event E3 in machine M2 is anticipated and becomes convergent only in
machine M5. The new event E4 in machine M3 becomes convergent in machine M4 “be-
fore” event E3. The interest of anticipated events is mostly this possibility to carry out
convergence proofs when it is most convenient, usually avoiding explicit specification
of lexicographic variants.

Roughly speaking, if X(v) is the variant of an anticipated event E(v), and Y(w) the
variant of a convergent event F(w) that refines E(v), then F(w) is convergent with re-
spect to the lexicographic variant (X(v),Y(w)). For X(v) we have verified that it is not
increased by E(v), that is, X(v′) ≤ X(v). Because F(w) refines E(v) it also does not in-
crease X(v) (modulo the gluing invariant). In particular, if F(w) leaves X(v) unchanged,
X(v′) = X(v), then Y(w) is decreased, hence, X(v′) < X(v) ∨ (X(v′) = X(v) ∧ Y(w′) <
Y(w)).

5See also Fig. 3.5b.
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Figure 3.10: Convergent and anticipated events

Example

Event insert coin in Fig 3.19a is anticipated in CoffeeR1 and is then proven convergent in
CoffeeR2 (Fig 3.19b) by introducing an upper bound on the number of inserted coins.

3.2.9 Enabledness of Refined and New Events

The concrete machine N is relatively deadlock-free with respect to the abstract machine
M if some concrete event is enabled whenever some abstract event is enabled. That is,
the disjunction of the guards of all abstract events (without INITIALISATION) implies
the disjunction of the guards of all concrete events (without INITIALISATION). This is
equivalent to the claim that each abstract event (except for INITIALISATION) implies the
disjunction of the guards of all concrete events (without INITIALISATION) . Whenever
the abstract machine may continue by means of some event E(v) with guard G(t, v), the
concrete machine may continue by means of at least one of the concrete events F1(w),
F2(w), . . ., Fn(w) with parameter lists u1, u2, . . ., un, and guards H1(u1,w), H2(u2,w), . . . ,
Hn(un,w),

I(v) ∧ J(v,w) ∧ G(t, v) ⇒ (∃ u1 ·H1(u1,w)) ∨ . . . ∨ (∃ un ·Hn(un,w)) .

Neither the Rodin proof obligations generation nor ProB model-checking or animation
support the notion of relative deadlock-freedom at the moment. ProB animation would
show a deadlock, because first the concrete events are animated and then their abstrac-
tions if a solution is found.

3.3 Description of the Multi-Level Animation Algorithm

In this section we describe the validation and animation algorithm in detail. We point
out in the presentation of the algorithm how it indicates problems with particular proof
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obligations. We also show how feedback to the user needs to be considered. Producing
informative output from an animation with good performance is a challenge. For this
reason the algorithm makes heavy use of ProB’s existing functionality. In particular,
ProB provides methods to find values for variables that satisfy predicates occurring in
Event-B models.

Below we limit the discussion to animation; but the algorithm is identical for model
checking: the model checker uses the same technique to determine the state space.

3.3.1 Preprocessing

The algorithm is applied to a particular refinement machine Mi of a model. In a pre-
processing step, all ancestor machines M0, . . . ,Mi−1 of Mi are loaded and all contexts
seen by M0, . . . ,Mi are merged by collecting the declared constants and joining the ax-
ioms. The invariant is obtained by conjoining all invariants of M0, . . . ,Mi.

We transform each event of Mi to an internal representation. The representation is
outlined on the right hand side of Fig. 3.11. Usually the list of abstract events contains
just one entry. If an event refines skip or belongs to the most abstract machine M0, the
list of abstract events is empty. If the event refines several events, it will contain all of
those events.

E.g., if we animate CoffeeR1, the event drink has one abstract event, the event drink
of CoffeeM, which itself has an empty list of abstract events. insert coin would have no
abstract events because it refines skip.

3.3.2 The Animation Algorithm

Figure 3.11: Illustration of the algorithm and one particular event structure
The animator executes events depending on the current state of a model. It main-

tains a state consisting of all constants of the seen contexts as well as all variables of the
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3 Validation of Formal Models by Refinement Animation

machines M0, . . ., Mi.

In a first step the animator tries to find values for the constants that satisfy all axioms.
Subsequently, the animator executes in each step an event of the most concrete machine
Mi; then it executes the corresponding abstract events from the concrete event to the
most abstract event.

When all of this has been done, the animator is ready for the next step.

The algorithm to animate a particular event works as follows (item numbers corre-
spond to those of Fig. 3.11, left hand side):6

1. Search for possible values for the parameters by evaluating its guard. If no values
are found, the event is disabled.

2. Execute each action by evaluating the respective before-after predicate. If no so-
lution is found, report an error. The possible reasons for a failing action are:
a. The predicate P of an action v :| P is not satisfiable or the set S of an action v :∈

S is empty. Both cases show violations of the event feasibility proof obligation.
b. The new value v′ of a variable v is constrained by a witness of a refined event

(see step 3), but the abstract action cannot assign a corresponding value to v′.
This indicates a violation of the action simulation proof obligation.

3. For each witness evaluate its predicate and try to find values for the witnessed
variable. If no value is found for a witness, report an error, because a witness
should have at least one solution (by the witness feasibility proof obligation).

4. a. If the list of abstract events is empty, a complete solution has been found for
this event that leads to a new state. It consists of the values newly assigned by
the actions plus the variables unchanged by the actions.

b. If there are one or more abstract events, choose one non-deterministically and
evaluate its guard like in step 1. If it evaluates to true, continue recursively with
step 2, otherwise try the next event.
If no guard evaluates to true, report an error, because the guard of the refine-
ment is weaker than that of the abstract event (violation of the guard strength-
ening proof obligation).

All four steps can be non-deterministic and we generate all solutions (limited to a
maximum number) with backtracking.

Common Variables and Parameters

As mentioned above we have basically two options for dealing with common variables
between a model and its refinement. One is to treat them as distinct variables xa and
xc and to add the implicit gluing invariant xa = xc. If an abstract event x := 1 is now
erroneously refined by x := 2, the animator can visualise the error by showing the post
state xa = 1, xc = 2 and indicating that the invariant xa = xc is violated.

But this approach has a fundamental problem as the following example shows. Let
the action of the abstract event be x :∈ {1, 2} and the corresponding action of the refined

6With respect to animation INITIALISATION is not treated differently from any other events (see left of
Fig. 3.11) except that it is enforced to occur once upon start of an animation.
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event x := 1. Our algorithm would find two possible post states, xa = 1, xc = 1 and
xa = 1, xc = 2. The first one is valid, the second one violates the implicit gluing invariant.
Thus ProB would wrongly show an error for a correct refinement.

A solution to prevent the spurious error is to add implicit witnesses x′a = x′c for all
common variables. Then after assigning x′c = 1, the evaluation of x′a = x′c results in
x′a = 1. The abstract assignment x :∈ {1, 2} is then just a check x′a = 1 ∈ {1, 2}. We still
would find an error for an invalid concrete action (like x := 3), namely a violation of
the action simulation proof obligation in step 2a. But adding the implicit witness has
the effect that the algorithm never finds solutions with different abstract and concrete
values. So there is no need to distinguish between them in the animation. The same
applies to common parameters.

A slightly different solution would be to add implicit witnesses only for those vari-
ables which are assigned non-deterministically in the abstract event. This would allow
us to generate a state which violates the gluing invariant that we could present the user
in case of deterministic assignments. For non-deterministic assignments we still have
to indicate a violation of the action simulation proof obligation in the event. It is not
clear to us if the presentation of an invalid result state is easier to understand than the
explanation of an error found in the event. So there is no clear benefit of this approach,
but the downside would be a less consistent algorithm and a larger representation of
a state by duplicating variables. Thus we have chosen the approach where we do not
distinguish between common variables.

Example

Fig. 3.12 shows a detailed example run for the event fill mug in the refinement CoffeeR2
to demonstrate the animation algorithm. The table displays what is happening for each
refinement level and step of the algorithm. The last column contains an entry if new
values for variables have been found by evaluating the predicates.

We have chosen an arbitrary state where fill mug is enabled as a starting point: alvl =
empty, clvl = 0, coins = 2, maxc = 4. The example shown leads to a new state alvl = full,
clvl = 9, coins = 1, maxc = 4. The variable maxc has not been modified by any action, so
its value is just copied to the new state.

Note that the evaluation of action @ffl (CoffeeR2, step 2) chooses the value 9 of clvl′
non-deterministically, in total there are 4 different possibilities, leading to 4 different
states with clvl ∈ 8 . . 11.

Animation of Convergent and Anticipated Events

If we have successfully found a possible event leading from one state to another, we can
easily check if the convergence criteria are satisfied. The principle is quite simple: for
each convergent event of an animated model, we check if the variant V is decreased and
non-negative by the predicates V > V′ and V ≥ 0 resp. V ⊃ V′ when the variant is a
set. If the event refines another convergent event, we omit the test: in the lexicographic
order constructed by refinement, events that have been shown to decrease a variant in an
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Refinement Step found values
CoffeeR2 1. evaluate the guards to see whether the event

is enabled:
@gc2: coins > 0 ≡ 2 > 0 ≡ �
@ml: clvl ∈ level−1[{empty}] ≡ 0 ∈ 0 . . 2 ≡ �

CoffeeR2 2. action @delc2: coins′ = coins − 1 ≡ coins′ = 2− 1 coins′ = 1

action @ffl: clvl′ ∈ level−1[{full}] ≡ clvl′ ∈ 8 . . 11 clvl′ = 9
CoffeeR2 3. witness for the abstract parameter x:

x = level(clvl′) = level(9) = full x = full
CoffeeR2 4. check the guard of the abstract event:

@gc: coins > 0 ≡ �
CoffeeR1 2. action @delc: coins′ = coins − 1 ≡ 1 = 2− 1 ≡ �
CoffeeR1 3. (no witness to check)
CoffeeR1 4. check the guards of the abstract event:

@g0: alvl = empty ≡ empty = empty ≡ �
@g1: x �= alvl ≡ full �= empty ≡ �

CoffeeM 2. action @a1: alvl′ = x alvl′ = full
CoffeeM 3. (no witness to check)
CoffeeM 4. no more abstract events, stop

Figure 3.12: Example run of the refinement algorithm for event fill mug

abstraction of some concrete machine may increase the variant of that concrete machine.
Similarly, we can check anticipated events (with V ≥ V′ and V ≥ 0 resp. V ⊇ V′), but
we cannot omit the test if an event is a refinement of an anticipated event. Violations
of specified variants are treated by ProB similarly to guard strengthening violations as
shown in Fig. 3.13.

Animating Only a Part of the Refinement Chain

Above we presumed that the user wants to animate a refinement Mi and all its ancestors
M0, . . . ,Mi−1. But we also permit the user to limit the animation to the refinements
between Mi and an “upper” refinement Mk with 0 ≤ k ≤ i instead of M0. Then variables
of not animated models and parts of predicates that contain references to those variables
will be removed, resulting in weaker predicates.

Such a reduction of the animated refinement levels usually leads to smaller represen-
tation of states and allows the user to focus on the parts of the model he is currently
interested in. However, the downside is that the limitation might hide some errors or
introduce spurious errors:

• The gluing invariant can refer to abstract variables, weakening it means that some
invariant violations are not detected anymore.

• Weakened witnesses can result in finding values for abstract parameters or vari-
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ables that were not possible with the original predicates. Those values might cause
other errors (e.g. violation of the simulation proof obligation).

If we limit the animation to a single refinement (k = i) the animation behaves like that
of ProB without multi-level support.

3.4 Refinement-Validation with ProB

Refinement animation can be used to validate models. We present some specific prob-
lems that can be analysed by animation and discuss a selection of case studies to which
it has been applied.

3.4.1 Detection of Specific Problems

Below we show on various modified versions of the coffee model (Fig. 3.3a) and its re-
finements (Fig. 3.19), how the new multi-level animation algorithm allows ProB to detect
a variety of refinement errors. Note that in contrast to AnimB and Brama, ProB is also a
model checker that can systematically detect refinement errors.

Figure 3.13: Violation of guard strengthening (ProB)

Guard Weakening

If we remove the guard @ml from the event fill mug in CoffeeR2, we violate the guard
strengthening proof obligation. As can be seen in Fig. 3.13, ProB’s model checker using
our new algorithm detects this problem straightaway (case 4a of our algorithm), leading
us to a state where fill mug is enabled in CoffeeR2 but not in the abstract machines.

Witness Disables Abstract Guard

A similar error message appears if we keep the guards as they are, but inject an error in
the witness. E.g, when using x = empty as witness for fill mug, ProB detects that there
is a solution for the witness, but that the witness does not enable the abstract event.
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Witness Not Feasible

Next, let us use the witness x = level(clvl′) ∧ x = empty for event fill mug. Here case
(3) of our algorithm detects an error for fill mug (after executing insert coin), and ProB
displays the error message: “�� �������� 	���
 	�� ������ �	 �� �������� ������� �

�� ��� ��������� ���”. The animator AnimB does not detect this error (but it did
detect the previous two errors).

Witness Violates Invariant

Finally, we try to specify the witness alvl′ ∈ {empty, half } − {alvl} for the event drink,
which does not guarantee that the abstract event will satisfy the gluing invariant. As

Figure 3.14: Violation of gluing invariant (ProB)
can be seen in Fig. 3.14, ProB finds an invariant violation error (alvl = level(clvl) is false)
directly after the drink event.

Note that, AnimB detects an error in the model, but only later when trying to execute
the fill mug event after the erroneous drink event.

In practice, validation by animation complements the proof-based methodology of
core Event-B. Corresponding methodological benefits of using animation of Event-B
models are discussed in more detail in [HL09].

3.4.2 Application to Case Studies

We have successfully applied the new multi-level animation of ProB on a two-level
model of SAP service choreographies [WKR+09]. We have also tested the tool on the
CDIS air traffic control case study carried out in the EU project Rodin. Figure 3.15 con-
tains a screenshot of the first two levels; we have successfully animated all 7 levels of the
full model concurrently.
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Figure 3.15: Animating the Rodin CDIS case study

Another case study was a complete development of the quicksort algorithm in Event-
B, consisting of ten machines and two contexts. We have successfully animated and
model-checked all the ten levels concurrently. Animation showed how the algorithm
“works” at different abstraction levels. This is valuable for explaining an otherwise static
model of an algorithm.

We have also successfully animated concurrently 14 levels of an elevator model solu-
tion by ETH Zürich. This has uncovered a potential problem in the model, namely that
starting at a certain refinement level, the lift is no longer able to move (but the doors
can be opened and closed and the buttons can be pressed; so there is no deadlock in the
conventional sense).

3.5 Comparison with Trace Refinement and Empirical

Evaluation

3.5.1 Comparing with Trace Refinement Checking

An important related work is the refinement checking algorithm in [LB05]. This algo-
rithm checks trace refinement between the abstract model and the refined model, i.e., it
checks that every trace of events of the refined model is also a valid trace of the abstract
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model.
For example, for our running Coffee example, all the possible traces of the abstract

model can be deduced from the state space in Figure 3.3. If the refined model can per-
form the trace INITIALISATION, drink, then the algorithm from [LB05] would detect an
error, as this trace cannot be performed by the abstract model CoffeeM.

The main differences between our new multi-level validation algorithm and [LB05]
can be summarised as follows:

• As the algorithm from [LB05] works on the level of traces, it can be applied to
other formalisms, such as CSP [Hoa85]. It can even be used to check refinement
relations between CSP and classical B [Abr96] models.

• The tools for classical B and Event-B generate proof obligations for forward re-
finement, which is not complete. I.e., there are systems which are related by trace
refinement but where no forward refinement can be established [HHS86]. The
new algorithm in this paper adheres to the forward refinement methodology of
Event-B, whereas [LB05] checks trace refinement.

• The algorithm of [LB05] checks the refinement relation between two models; our
new algorithm checks an entire refinement chain in one go (but restricted by the
state space of the most concrete model).

• The algorithm of [LB05] computes the state space of the refined model on-the-fly,
but it has to compute the entire state space of the abstract model before starting
the refinement checking (for the running Coffee example, this corresponds to Fig-
ure 3.3). The new algorithm in this paper performs the entire validation on-the-fly.
In particular, only the relevant parts of the state space of the abstract model(s) are
computed. We will illustrate this in the empirical results below.

• The algorithm of [LB05] performs the refinement checking depth-first; the new
algorithm can use any of ProB’s search methods (depth-first, breadth-first and the
default mixed depth-first/breadth-first search). Especially for large state spaces,
this increases the likelihood of detecting errors; see [Leu08].

• The algorithm of [LB05] computes the state space of the abstract model indepen-
dently of the refined model and thus does not check the gluing invariant. Further-
more, in its current form, it cannot make use of Event-B’s witnesses and hence has
to keep track of sets of states in the abstract model. Our algorithm makes use of the
witnesses, which often allows us to only relate a single abstract state to a refined
state. It also allows us to relate parameters of the refined event to parameters of the
abstract event. E.g., in our running example, fill mug has no parameter in CoffeeR2,
while it has the parameter x in CoffeeR1 and CoffeeM; the witness x = level(clvl′) in
CoffeeR2 tells us which parameter value to use in the abstract models. The algo-
rithm of [LB05] was devised in a setting of CSP and classical B, where parameters
of events or operations cannot be refined. E.g., in the running example it would
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Benchmark Multi-level Multi-level Trace-Refinement [LB05]
with symmetry [LM07]

Consistency Checking

Scheduler0 1930 ms 50 ms 1930 ms

Refinement Checking

Scheduler1 8760 ms 70 ms 1930 ms + 7260 ms
Scheduler1 err 360 ms 30 ms 1930 ms + *16090 ms
Scheduler1 terr 10 ms 20 ms 1930 ms + 60 ms

*: no error found, as gluing invariant not checked

Table 3.1: Comparing trace-refinement checking and multi-level validation

report a counter-example (INITIALISATION, fill mug) for CoffeeR2, unless we tell
it to ignore all parameters in traces.

To evaluate the practical performance difference between the two algorithms, we have
adapted the scheduler example from [LB05] (and originally from [LPU02]) for Event-B.
The abstract model Scheduler0 schedules a certain number of processes (which we have
fixed to 6 in the experiments), and keeps them in the sets waiting, ready and active. At
most one process can be active at any one time. In the refinement Scheduler1 there is a
queue for the ready processes (the abstract model just keeps them in a set). We have
also generated two incorrect refinements: in Scheduler1 err the event swap ready is not
shifting the indexes in the queue and in Scheduler1 terr there is a missing guard in the
event new.

The experimental results are summarised in Table 3.1. The times are in milliseconds,
and do not include the time to load the models. The experiments were run on a MacBook
Pro with a 3.06 GHz Core2Duo processor, and ProB 1.3.2 compiled with SICStus Prolog
4.1.2. In essence, we can draw the following conclusions.

Scheduler1: there is no big performance difference here between the multilevel valida-
tion and the trace checking. However, the multilevel validation also checks the
gluing invariant. Furthermore, symmetry reduction [LM07, SL08] can be applied;
which in this case dramatically reduces the model checking time by a factor of
38.6. We explain why symmetry can be more easily exploited with our multi-level
algorithm further below in subsection 3.5.3.

Scheduler1 err: Here we see that the trace refinement checking does not catch the error
introduced in the model, as the error only manifests itself in the violation of the
gluing invariant. In this case, this leads to a big difference in performance, as
both the abstract and refined state space are fully explored by the trace refinement
check.

Scheduler1 terr: Here, the trace refinement checking does catch the error, as this time
it does result in a trace of the refined model which cannot be mimicked by the
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abstract model. Note, however, that there is a big performance difference, as the
algorithm from [LB05] has to explore the full state space of the abstract model
(even though only a small part of it was needed to find the counterexample).

3.5.2 Application to other Formalisms

In general we think the algorithm can be adapted to formalisms which support a concept
of refinement similar to that of Event-B. In the following we have a closer look at classical
B and ASM which have many concepts in common with Event-B.

Classical B

An obvious candidate for adapting the presented algorithm is classical B [Abr96]. Like
Event-B, classical B has machines with variables and invariants on them. Operations
can change the values of variables by generalised substitutions. Unlike events in Event-B
operations can have preconditions.

Lets assume an abstract B machine with invariant I and an operation with precon-
dition PA and substitution SA. Its refinement has a gluing invariant J and an operation
with precondition PR and substitution SR. Let [S]P denote the weakest precondition that
ensures that an execution of S results in a state satisfying P. A refinement must fulfil
two conditions:
- Starting from a state where I, J and PA hold, for each execution of SR there must exists

a corresponding execution of SA such that J holds in the resulting state. Formally this
is expressed by I ∧ J ∧ PA ⇒ [SR]¬ [SA]¬ J.

- The precondition of the refined operation must be weaker than the abstract operation’s
precondition, formally I ∧ J ∧ PA ⇒ PR.
Whereas the presented algorithm follows a strict bottom-up (from refinement to ab-

stract machine) approach, animating classical B could probably require a combination
of a top-down and bottom-up approach: First we evaluate PA on a state, then we check
if PR also holds. Then we can execute SR to find the concrete values of a new state. Af-
terwards we check if there is a corresponding abstract substitution that fulfils J.

In future work we will further investigate this approach. There are still several open
technical issues (e.g., how to give the user helpful feedback in case of errors) as well as
fundamental issues (e.g., have we thought of all possible situations regarding precon-
ditions?). We expect that witnesses or a similar concept will have to be introduced in
classical B as well. Preconditions could be handled similarly to guards, except for the
order in which preconditions have to be evaluated, as indicated above.

ASM

ASM provides a very generic framework for refinement [Bör03]. Unlike Event-B, it al-
lows the refinement of an arbitrary number of abstract operations by an arbitrary num-
ber of concrete operations. Thus we do not see how we could apply this algorithm to
that liberal form of refinement.
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Of course, using a restricted form of ASM refinement could make our approach ap-
plicable with only small modifications. The only difference would be that ASM rules
can be enabled simultaneously whereas Event-B events cannot.

3.5.3 Symmetry Reduction for Multi-Level Validation

The reason symmetry reduction cannot be (easily) applied when using the refinement
checking algorithm from [LB05], is that the abstract and refined model are explored
separately. Hence, symmetry reduction would have to be applied to these two steps
separately as well. A big problem now is that the canonical form chosen for the ab-
stract model may be incompatible with the one chosen for the refined model, leading to
erroneous counterexamples and/or to real counterexamples not being found.

Let us look at the example in Figure 3.16. The abstract model ProcSet contains a vari-
able x, which stores process identifiers taken from the carrier set Proc, declared in the
context PCtxt. The event new can be used to add elements to x, and the event del to re-
move elements from x. In the refined model ProcSeq the process identifiers are stored
in a sequence q. The model also stores the size of the sequence as a separate variable.
Observe that the elements of Proc can be interchanged, leading to symmetries in the
state space. Notably, all successor states of the initial state x = ∅ are symmetric in
the abstract model. Similarly, all successor states of the initial state q = ∅, n = 0 are
symmetric in the refined model. Let us assume that we have two process identifiers:
Proc = {P1,P2}. The top of Figure 3.17 contains the initial state and the successor states
for the abstract and refined model. The symmetry reduction algorithm from [SL08]
will now chose one representative per equivalence class. Say the symmetry reduction
chooses the successor of new(P1) for the canonical representative for the abstract model,
but for some reason (e.g., due to the other data structure used) chooses the successor
of new(P2) in the refined model. As we can see in the bottom of Fig. 3.17, in this case
new(P1), del(P2) or new(P2), del(P2) are traces of the symmetry reduced refined model,
which cannot be mimicked by the symmetry reduced abstract model.7 Hence, the trace
refinement checking algorithm would erroneously report that refinement fails. In mul-
tilevel animation, the canonical form is computed on the combined state of the abstract
and refined model, and as such respects the relationship between them. This is illus-
trated in Fig. 3.18, where one representative is chosen for the combined abstract and
refined state.

In Table 3.2 we show how effective symmetry reduction can be for multi-level valida-
tion. We have run exhaustive multi-level model checking for the refined ProcSeq model
of Fig. 3.16 with and without symmetry reduction. We have used the symmetry reduc-
tion technique from [SL08].

7The permutation flooding technique [LBST07] could probably be made to work more easily, as it explic-
itly adds “permutation” actions to the state space.
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Figure 3.16: A model symmetric in the set of processes Proc

3.5.4 More Experimental Results

The experiments below were again run on a MacBook Pro with a 3.06 GHz Core2Duo
processor, and ProB 1.3.2 compiled with SICStus Prolog 4.1.2.

To evaluate the cost of treating multiple levels at once we have run our algorithm on
an Event-B model for an elevator by ETH Zürich with an abstract machine and 13 refine-
ments. We have measured the time to check 100 states for each of the 14 machines. The
results are summarised in Table 3.3. Note that the state spaces for levels 0 to 4 have less
than 100 nodes each, hence the full state space was explored in the given time. Starting
at level 5, the state space has more than 100 states; we have stopped the algorithm at 100
nodes to be able to compare the time required to treat the same number of nodes. Also
note that, we have always animated all levels above the given level (i.e., when validating
the level 13 model, we have also validated levels 0–12). As we can see, there is no sim-
ple linear dependence between the validation time and the number of levels animated.
However, up to level 8 the runtime seems to increase linearly with the number of levels
animated. Then there is a big jump at level 9 (which introduces 6 new variables of type
total function), after which the runtime seems to increase again linearly (albeit with a
steeper slope).

We have conducted a similar experiment for the Quicksort model from [Hal09a], for
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Cardinality States Validation Time States Validation Time
of Proc (without symmetry) (with symmetry)
1 3 0.001 s 3 0.002 s
2 6 0.004 s 4 0.003 s
3 17 0.012 s 5 0.006 s
4 66 0.049 s 6 0.009 s
5 327 0.278 s 7 0.013 s
6 1,958 1.618 s 8 0.018 s
7 13,701 11.325 s 9 0.025 s
8 100,001 90.930 s 10 0.033 s

Table 3.2: Experimental results for multi-level validation with symmetry reduction

Level Validation Cost for Time
Time extra level per level

(100 states)
0 0 ms
1 0 ms
2 20 ms
3 30 ms
4 80 ms
5 100 ms
6 130 ms 30.0% 18.57
7 160 ms 23.1% 20.00
8 190 ms 18.8% 21.11
9 840 ms 342.1% 84.00
10 1110 ms 32.1% 100.91
11 1550 ms 39.6% 129.17
12 1790 ms 15.5% 137.69
13 2160 ms 20.7% 154.29

Table 3.3: Experimental results for multi-level validation of the ETH elevator (levels 0–4
have less than 100 states)
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Figure 3.17: Illustration of symmetry reduction for trace refinement checking

a particular array to be sorted. The results are summarised in Table 3.4. Here, we can
see that between level 0 and 1 the number of nodes and the validation time actually
decreases: the refined model is more deterministic and has, hence, a reduced state space.
The non-deterministic choice of a sorting permutation in the abstraction is implemented
by a deterministic algorithm computing such a permutation. The validation time per
node and level actually goes down until level 4, and then remains relatively stable from
level 5 onwards.

We have also applied our algorithm on industrial models from SAP, Bosch and Siemens
within the Deploy project. In all instances, the multi-level algorithm dealt very well with
large number of refinement levels.

3.6 More Related Work

As already indicated above, the tools Brama and AnimB are also capable of performing
multi-level animation of Event-B models, and have partially inspired this work. Unfor-
tunately there is little scientific or technical documentation available for either of these
tools. A few notable differences are

- Both Brama and AnimB require the user to specify explicitly values for constants; that
is, we had to “calculate” the Cartesian products for the level constant in Fig. 3.1 by
hand.
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Figure 3.18: Illustration of symmetry reduction for multi-level validation

Level Validation Nodes Cost for Time
Time extra level per node

(complete) and level
0 300 ms 34 8.82
1 60 ms 18 -80.0% 1.67
2 110 ms 18 83.3% 2.04
3 170 ms 44 54.5% 0.97
4 190 ms 65 11.8% 0.58
5 260 ms 65 36.8% 0.67
6 310 ms 66 19.2% 0.67
7 360 ms 66 16.1% 0.68
8 410 ms 66 13.9% 0.69
9 460 ms 66 12.2% 0.70

Table 3.4: Experimental results for multi-level validation of a Quicksort model

- ProB can be driven by a model checker to systematically search for errors, and to val-
idate LTL formulas.

- ProB uses a constraint-solving approach to find solutions for predicates, while AnimB
and Brama seem to rely on pure enumeration. As such, ProB can evaluate much more
complicated guards and predicates than AnimB or Brama.

Another animator for Event-B is [ASA08]; but it does not yet seem to support refinement
animation. The same is true for the animator in [ABC+02] for classical B.

Animation was already considered valuable in the tools supporting the B Method,
Atelier B [Ste09] and the B-Toolkit [B-C02]. Both contain support for animating formal
models. However, the support is very rudimentary. It relies on the user to supply pa-
rameter values to carry out a step of the simulation engine. If the supplied values do
not satisfy the guard, this is shown to the user but the simulation continues.

Abstract State Machines [BS03] have traditionally an operational conception of mod-
elling. The tool CoreASM [FGG07] support animation of Abstract State Machines based
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on an executable core of the notation. Refinement [Bör03] is not supported yet. The re-
finement notion of Abstract State Machines is very general. Thus, it may be difficult to
achieve efficient animation without introducing restrictions on permissible refinements.
We also believe that the concept of witnesses could be a key for Abstract State Machine
refinement animation, too.

Tools for VDM [Jon90] have also provided animation features. VDMTools [Sys10]
provides animation but not of refinements. An early attempt on animation of VDM
models has been made in [Led97]. However, the approach relies on the user to com-
pare simulation traces of abstract and concrete models. We think automation of this is
indispensable, because relying on the user for trace inspection the approach appears
error-prone.

We have not considered animation of formalisms based on automata or Petri nets
here because the challenges in their animation are quite different from those we face in
Event-B, a state-based formalism with forward refinement at its core, where the model
is described in terms of first-order predicate formulas.

3.7 Conclusion

We have presented a description of refinement in Event-B and have shown how a suit-
able animation and validation algorithm can be developed. The key ingredient that
makes the algorithm tractable are the witnesses of Event-B. We have implemented the
algorithm within ProB, and have shown how a variety of refinement errors can now be
detected effectively. We have applied the technique to various case studies, and have
animated up to 14 levels simultaneously. The algorithm presented in the article also
achieves further performance improvements over previous work based on trace refine-
ment, for instance, by applying symmetry reduction to multiple levels of refinement at
once. It would be interesting to see how the new ideas apply to classical B, in particular.
We leave this for future work.

We consider proof and animation complementary techniques of validation. Hence,
animation does not need to provide all capabilities that formal proof provides. For in-
stance, for finding candidates of invariants formal proof appears superior; for checking
whether they are always satisfied, i.e., finding counter examples, animation appears su-
perior. Moreover, animation can be used to reason about properties that have not (yet)
been formalised.

We would like to incorporate some improvements into the animator. We would like
to be able to better visualise relative deadlocks, i.e., states where all concrete events are
disabled but some abstract event is enabled. For now, animation shows in case of a
relative deadlock that all concrete events are disabled and does not analyse the abstract
events further. Moreover, Event-B types and definitions would be needed that support
animation better. For instance, transitive closures are defined as sets of all transitive
closures of all relations of a certain type. For animation, it would be sufficient to compute
only the closures of the relations actually appearing in a model. We would like to link
the animator closer to the other components of the Rodin tool. We would also like to
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indicate certain errors found in Event-B models by ProB in associated proof obligations,
for instance, so that the violated proof obligations can be marked as “not provable.”
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3.8 Appendix: Refinements of the Coffee Model
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(a) First refinement CoffeeR1 (b) Second refinement CoffeeR2

Figure 3.19: Refinements of coffee dispenser machine
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4 Seven at one stroke: LTL model checking

for High-level Specifications in B, Z, CSP,

and more

Daniel Plagge, Michael Leuschel

Abstract. The size of formal models is steadily increasing and there is
a demand from industrial users to be able to use expressive temporal
query languages for validating and exploring high-level formal spec-
ifications. We present an extension of LTL, which is well adapted for
validating B, Z and CSP specifications. We present a generic, flexible
LTL model checker, implemented inside the ProB tool, that can be ap-
plied to a multitude of formalisms such as B, Z, CSP, B‖CSP, as well as
Object Petri nets, compensating CSP, and dSL. Our algorithm can deal
with deadlock states, partially explored state spaces, past operators,
and can be combined with existing symmetry reduction techniques
of ProB. We establish correctness of our algorithm in general, as well
as combined with symmetry reduction. Finally, we present various
applications and empirical results of our tool, showing that it can be
applied successfully in practice.
Keywords: Validation and Verification – Notations and Languages

– LTL – model checking – B-method – CSP – Z – Integrated Methods

– symmetry reduction.

4.1 Introduction and Motivation

The B-Method and Z are used in railway systems [DEF03], the automotive sector [Pou03],
as well as avionics [Hal96]. The size of the formal models is steadily increasing and there
is a big demand from industrial users to be able to animate and validate high-level spec-
ifications [ED07], in order to ensure that the correct system is built. ProB is an animator
and model-checker primarily designed for B [LB08]. By now ProB supports other for-
malisms like Z specifications [PL07], CSP, B‖CSP, Object Petri nets, compensating CSP
and dSL (a programming language used for industrial controllers). Beside animation, it
can also be used to detect invariant violations, deadlocks and check refinement. How-
ever, there is also an industrial demand for expressive temporal query and validation
languages1, in order to validate temporal properties of the system (not easily expressed

1Private communication from Kimmo Varpaaniemi, Space Systems Finland.
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in B or Z), as well as to navigate in the state space, and ask questions about the future
and past of the current state.

In this paper we present a methodology and implementation to satisfy this industrial
need by

• using LTL as the core and—based on feedback from case studies—extending it to
enable convenient property specification by the user,

• implementing the model checking algorithm and integrating it into the ProB tool
set. Due to the flexible, high-level implementation our technology is not limited
to B and Z, but can also be applied to CSP, combinations of B, CSP and Z, as well
as to a few other domain specific formalisms.

• providing a practical evaluation of our language and tool, showing that we can
express a large class of problems (covering many described in earlier literature)
and also solve those problems in practice using our implementation.

The article is organized as follows: After discussing the approach in general, we give
a formal definition of LTL[e] (Section 4.3) and describe the model-checking algorithm
(Section 4.4), along with an extension for past-LTL (Section 4.5). In Section 4.6 we pro-
vide some examples and experiments. After showing that LTL[e] can be combined with
symmetry reduction (Section 4.7), we conclude the article with look at related and future
work.

4.2 LTL for Formal Models

LTL is a popular temporal logic for model checking [CGP99], and is now considered to
be more expressive, intuitive and practically useful than CTL (see, e.g. [Var01]). De-
spite an apparent complexity problem (model checking LTL is exponential in the size of
the formula), “efficient” algorithms exist for LTL model checking, notably by negating
an LTL formula and translating it into a Büchi automata. The most prominent model
checking tool that supports LTL is probably spin [Hol97]. But note that newer versions
of SMV now also support LTL. Despite its popularity and usefulness, there are a number
of formalisms which are still lacking an automatic LTL model checking tool.

• The B-Method [Abr96]
There has also been considerable interest in trying to verify temporal properties
for B specifications. In [BB02] proof obligations are defined for liveness proper-
ties in B. A way to reason about temporal properties of B systems is described in
[BPS05] amongst others, e.g., checking properties about when operations are en-
abled. The work in [Gro06b] and the associated JAG tool [Gro06a] aim to prove
LTL properties of B machines by translating Büchi automata into a B representa-
tion and generating suitable proof obligations. However, none of these provide
a fully automatic model checker, as proof obligations still need to be discharged.
The works [BDJK01] and [CJMB05] also study the use of LTL for B specifications,
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in particular examining the link with refinement. The work in [Par00] describes a
LTL model checker for B based on CLPS-B [BLP02].The system does not cover the
full B language (e.g., no power set construction, no lambda abstractions nor set
comprehensions are supported) and deals with standard LTL (albeit with fairness
constraints).

Finally, the model checker ProB [LB08] is a fully automatic tool, but in its current
form can only check safety properties, as well as perform refinement checks.

In summary, to our knowledge there is no automatic tool available to check LTL
properties for full B (or at least a large subset thereof). The same can be said for
the composition of B and CSP (see, e.g. [TS00] and [BL05]).

• CSP [Ros99]
This formalism is supported by the refinement checker FDR [Oxf10]. Here, the
idea is to model both the system and the property in the same formalism, e.g., as
CSP processes, and perform refinement checks.

The relationship between refinement checking and LTL model checking has been
studied (e.g., [Ros05] and [DS04]) and we ourselves have even proposed a way to
perform LTL model checking for CSP using FDR in [LMC01], by translating Büchi
automata into CSP processes, language intersection into CSP synchronisation and
the emptiness check into a refinement check. However, this approach is not that
useful in practice (because the complexity is on the wrong side of the refinement
check for FDR to be efficient, and because it requires several tools to be applied in
sequence).

Contributions: In the rest of this paper we describe an extension of LTL, called LTL[e],
which is well adapted for validating B, Z and CSP specifications, by allowing us to rea-
son about enabled operations and the execution of operations. In addition, we present
the implementation of a LTL[e] model checking algorithm inside ProB, which can

• deal with deadlock states and partially explored state spaces,

• be applied in conjunction with symmetry reduction,

• be directly applied to multiple formalisms, such as B, CSP, B ‖ CSP, Z, Object Petri
nets, StAC (CSP with compensations), and dSL.

We establish correctness of our algorithm in general, as well as combined with symme-
try reduction. In addition we provide various applications and useful LTL[e] patterns,
as well as empirical results. We also briefly present an extension to allow Past LTL op-
erators [LS95].
Discussion about the approach: The interested reader may ask the question: “Why
did we not translate our formal models into, e.g., Promela and use the spin LTL model
checker?” Indeed, this approach is perfectly valid, and has proven to be successful for
some lower-level languages (e.g., for Java in [HD01] or dSL in [WGMM05]). For very
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high-level languages, however, this approach becomes much more difficult. Indeed,
translating B directly into Promela would be extremely challenging (it is already difficult
enough to write a B interpreter in Prolog with constraint solving like we did for ProB),
and it is furthermore very difficult to avoid additional state space explosion due to the
smaller granularity of Promela (see, [Leu08]).2 Another option would be to compute
the state space with ProB, and then translate it to a Promela model. We have actually
implemented such a translation, but it has so far not proven to be practically useful. First,
the overhead of starting up an external tool can be considerable (typically 6 seconds were
needed for spin to generate and compile the pan.c files). Also, translating the high-level
properties into atomic Promela properties can be expensive, and it is not obvious how
to exploit the symmetry present in the high-level model in the Promela model. Most
importantly, the extensions of the LTL language, which are needed for most interesting
practical applications discussed in Section 4.6, are not supported by spin. Still, we plan
to reevaluate this approach in the future.

4.3 LTL[e]

We want to use the LTL model checker for models specified in B, Z, etc. Those models
can have deadlock states, but usually LTL formulas are defined over Kripke structures
such that every state must have at least one successor state. To support models with
deadlock states, we simply extend the definition of a Kripke structure to also allow states
without successors.

Another approach to treat deadlock states is to add a ‘dummy’ loop transition to each
deadlock state or even to add an additional state with a loop. But this introduces subtle
differences, e.g. when a dummy transition is added, the formula Xp is true in a deadlock
state iff p is true in the state itself. We think that Xp should not be true at all because there
is no next state. Our approach has the advantage that the underlying labeling transition
system remains unaltered whereas the performance impact is very low.

From preliminary case studies it became clear that often it is interesting to know which
kind of operation has been performed to get into a certain state. Especially in CSP mod-
els, we are often only interested in the operation performed, not in the state between
operations. We add labels on transitions in the relation of the Kripke structure. LTL
with support for labelled transitions can also be found in [CCO+05], but the definition
there is limited to infinite paths.

Propositions on transitions give us the possibility to express statements like ‘the next
operation on the path is op1(x) with x > 3’. In the formalism below we denote such
statements with [t], where t is the proposition on the transition.

Definition 1. A labelled Kripke structure M with possible deadlocks over atomic propositions
AP and transition propositions TP is a tuple M = (S, S0,R, L) consisting of a set of states S, a

2This process was actually attempted in the past — without success — within the EPSRC funded project
ABCD at the University of Southampton.
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set of initial states S0 ⊆ S, a ternary relation between states R ⊆ S × 2TP × S, and a labeling
function L ∈ S → 2AP.

For our purposes we do not restrict the relation to be total, so the structure may have deadlock
states. The set of deadlock states is

deadlocks = {s ∈ S|¬ ∃ t, s′ : (s, t, s′) ∈ R}.
Definition 2. A path π in M can be either infinite or finite ending in a deadlock state:

• A finite path of length |π| = k, k ≥ 1 is a finite sequence π = s0 t0−→ . . . tk−2−→ sk−1 with
s0 ∈ S0, sk−1 ∈ deadlocks and ∀ i : 0 ≤ i < k − 1 ⇒ (si, ti, si+1) ∈ R.

• Infinite paths have the form π = s0 t0−→s1 t1−→ . . ., s0 ∈ S0, ∀ i ≥ 0 : (si, ti, si+1) ∈ R. We
denote |π| = ω for the infinite length of π.

We denote πi as the suffix of π without π’s first i elements.
We extend the semantics of LTL formulas in two aspects: First we claim that a formula

of the form Xϕ is only true if the current state is not a deadlock. Second we allow to
check if a transition proposition holds in the transition to the next state by using the [t]
construct. A state s in M satisfies a formula ϕ (denoted M, s |= ϕ) if all paths starting in
s satisfy ϕ. Whether a path π satisfies a formula ϕ (denoted M, π |= ϕ, or shorter π |= ϕ
if M is unambiguous) is defined by:

π |= true
π |= p ⇔ π = s0 . . . and p ∈ L(s0)

for atomic propositions p ∈ AP
π |= ¬ ϕ ⇔ π �|= ϕ

π |= ϕ ∨ ψ ⇔ π |= ϕ or π |= ψ

π |= Xϕ ⇔ |π| ≥ 2 and π1 |= ϕ

π |= ϕUψ ⇔ ∃ k < |π| : πk |= ψ

and ∀ i : 0 ≤ i < k ⇒ πi |= ϕ

π |= [t] ⇔ |π| ≥ 2 and

π = s0 t0−→π1 with t ∈ t0
for transition labels t ∈ TP

So far we have defined only a few basic LTL[e] operators. We introduce other operators
like conjunction (∧), finally (F), globally (G), release (R) and weak until (W) in the usual
way:

false := ¬ true
ϕ ∧ ψ := ¬ (¬ ϕ ∨ ¬ ψ)

Fϕ := true Uϕ

Gϕ := ¬ F¬ ϕ = ¬ (true U¬ ϕ)

ϕRψ := ¬ (¬ ϕU¬ ψ)

ϕWψ := Gϕ ∨ ϕUψ = ¬ (true U¬ ϕ) ∨ ϕUψ
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4.4 The Model Checking Algorithm

Below we adapt the LTL model checking algorithm from [LP85] and [CGP99]. One may
ask why we did not use the “standard” LTL model checking algorithm based on Büchi
automata. Our motivations were as follows:

• It can be easily extended to deal with “open” nodes, on which no information is
available. This is especially useful for infinite state systems, where only part of the
state space can be computed. Also, it is not clear to what extent Büchi automata
can easily deal with the [t] operator from LTL[e].

• The state space for B and Z specifications is, due to the high-level nature of the
operations, typically much smaller than for other more low-level formalisms such
as Promela. This is especially true when we apply symmetry reduction (cf. Sec-
tion 4.7). Hence, the bottleneck is generally not to be found inside the LTL model
checking algorithm.

• The algorithm can also later be extended to CTL∗ [CGP99].

We implemented the algorithm in C, using SICStus Prolog’s C-Interface to integrate
it into the ProB tool. The model checking module is not specific to the B formalism, in
fact it uses callback mechanism to let the Prolog code evaluate the atomic propositions
and outgoing transitions for every state.

4.4.1 Overview of the algorithm

To check if a model satisfies a given LTL[e] formula, we use a modified version of the
tableau algorithm given in [LP85] and [CGP99]. We adapted the algorithm in a way
that deadlock states and propositions on transitions are supported.

To check if a state s in the structure M satisfies a given LTL formula, we try to find a
counter-example by searching for a path starting in s that satisfies the negated formula
ϕ.

In the next paragraphs we explain how a graph can be constructed that contains some
nodes (called atoms) for each state of the model. An atom represents a possible valuation
of ϕ and its subformulas that is consistent with the corresponding state. E.g. for a
formula ϕ = a ∨ Xb with a, b ∈ AP, the valuations of a and b are defined by the state but
there are two atoms, one where Xb is true and one where Xb is false. There is an edge
between two atoms A and B if there is a transition between the corresponding states and
if subformulas of the form Xψ in A have the same valuation as ψ in B.

Then we search for a path of atoms that serves as a counter-example with the following
properties: The path starts with an atom (s0, F0) of the initial states (s0 ∈ S0) where
ϕ ∈ F0. And for each atom on the path where ψ1 Uψ2 is true, ψ1 is true until a state
is reached where ψ2 is true. A counter-example may be infinitely long, then it consists
of a finite path, followed by a cycle. To find also those cycles, we search for a strongly
connected component (SCC) with certain properties.
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We adapt the original algorithm’s rules of how atoms can be constructed and when a
transition from one atom to another exists. And in contrast to the original algorithm we
consider deadlock states in the requirements of the SCC we search for.

After presenting the algorithm, we show how nodes that are not yet explored can be
handled and present a proof for the correctness of our extensions to the algorithm.

For the interested reader we provide our algorithm in full detail below. The reader
not interested in this can skip to Section 5.

4.4.2 The closure of a formula

The closure Cl(ϕ) of a formula ϕ is the smallest set of LTL[e] formulas satisfying the fol-
lowing rules:

ϕ ∈ Cl(ϕ)
ψ ∈ Cl(ϕ) ⇒ (¬ ψ) ∈ Cl(ϕ),

identifying ¬ ¬ ϕ with ϕ

ψ1 ∨ ψ2 ∈ Cl(ϕ) ⇒ ψ1 ∈ Cl(ϕ) and ψ2 ∈ Cl(ϕ)
Xψ ∈ Cl(ϕ) ⇒ ψ ∈ Cl(ϕ)

¬ Xψ ∈ Cl(ϕ) ⇒ X(¬ ψ) ∈ Cl(ϕ)
ψ1 Uψ2 ∈ Cl(ϕ) ⇒ ψ1 ∈ Cl(ϕ), ψ2 ∈ Cl(ϕ),

X(ψ1 Uψ2) ∈ Cl(ϕ)

Informally, the closure Cl(ϕ) contains all formulas that determine if ϕ is true. This def-
inition has been taken without modification from the original algorithm.

4.4.3 Atoms of a state

An atom is a pair (s, F) with s ∈ S and F a consistent set of formulas F ⊆ Cl(ϕ). F is
consistent if it satisfies the following rules:

• p ∈ F iff p ∈ L(s) for atomic propositions p ∈ AP

• ψ ∈ F iff (¬ ψ) �∈ F for ψ ∈ Cl(ϕ)

• ψ1 ∨ ψ2 ∈ F iff ψ1 ∈ F or ψ2 ∈ F for ψ1 ∨ ψ2 ∈ Cl(ϕ)

• ψ1Uψ2 ∈ F iff ψ2 ∈ F or ψ1,X(ψ1Uψ2) ∈ F for ψ1 Uψ2 ∈ Cl(ϕ)

• If s ∈ deadlocks then (¬ Xψ) ∈ F for Xψ ∈ Cl(ϕ)

• If s /∈ deadlocks then Xψ ∈ F ⇔ (X¬ ψ) /∈ F for Xψ ∈ Cl(ϕ)

• If s ∈ deadlocks then (¬ [t]) ∈ F for all transition propositions t ∈ TP.
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Our changes to the original rules are as follows: We added the last rule for transi-
tion propositions and we introduced the distinction of the cases s ∈ deadlocks and s /∈
deadlocks for the X operator.

Whether a formula ψ ∈ Cl(ϕ) is in F or not for an atom (s, F) thus depends on the
current state’s atomic propositions and whether formulas with next operators Xψ and
the transitions propositions [t] are in F or not. We denote the set of all possible atoms of
a state s with A(s) and all atoms of the set of states S with A(S). The number of atoms of
s is limited by |A(s)| ≤ 2Nx · 2Nt , where Nx is the number of next operators in Cl(ϕ) and
Nt the minimum of the number of transition propositions in Cl(ϕ) and the maximum
vertex degree Σ(G). Thus the maximum number of atoms grows exponentially with
the number of next and until operators (because an until operator implies an additional
next operator in the closure) and Nt.

4.4.4 Search for self-fulfilling SCCs

We construct a directed graph G with the set of all atoms A(S) as nodes. There is an
edge from (s1, F1) to (s2, F2) labelled with t iff

• there is a transition in M from the state s1 to s2 with (s1, t, s2) ∈ R, and

• Xψ ∈ F1 ⇔ ψ ∈ F2 for all formulas Xψ ∈ Cl(ϕ), and

• [t′] ∈ F1 ⇔ t′ ∈ t for all [t′] ∈ Cl(ϕ)

The last rule is an addition to the original algorithm.
A strongly connected component (SCC) C is a maximal subgraph of G such that be-

tween all nodes in C there exists a path in C. We search for an SCC C that is reachable
from an atom (s0, F0) of an initial state s0 ∈ S0 with ϕ ∈ F0 and that has the following
properties:

• For every atom (s, F) in the component C, and every formula ψ1 Uψ2 ∈ F there
exists an atom (s′, F′) in C with ψ2 ∈ F′. (‘self-fulfilling’)

• There exists an edge in C (‘nontrivial’) or C consists of exactly one deadlock state.

In contrast to the original algorithm we added the exception for deadlock states.
We use Tarjan’s algorithm [Tar72] to identify the SCCs in the graph. If we find a

nontrivial self-fulfilling SCC C, we can construct an α-path (a path of atoms in G)

πα = (s0, F0)
t0
−→ . . .

︸ ︷︷ ︸
π1

(sc, Fc)
tc
−→ . . . (sc, Fc)

︸ ︷︷ ︸
π2

with s0 ∈ S0, ϕ ∈ F0 and (sc, Fc) in C. The first part π1 is the α-path from an initial atom
to an atom in the found SCC C. The second part π2 is a loop in C that includes an atom
(s, F) with ψ2 ∈ F for each ψ1 Uψ2 ∈ Cl(ϕ).

The path π = s0 t0−→ . . . sc
tc−→ . . . sc then acts as a counter-example.

If the found SCC consists of exactly one atom (sd, Fd) of a deadlock state sd, the found
α-path has the formπα = (s0, F0)

t0−→ . . . (sd, Fd), and the counter-example isπ = s0 t0−→ . . . sd.
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4.4.5 Handling of open nodes

An open node in the state space S is a node, whose outgoing transitions are not cal-
culated yet. The algorithm explained above can be easily modified to work with state
spaces that contain open nodes. Whenever the outgoing transitions of a node are needed
in Tarjan’s algorithm, we check if the current node is an open node. If so, all transitions
starting in the node will be calculated. This way the LTL[e] model checker can drive the
exploration of the state space. Also, part of the state space can remain unexplored, while
still ensuring the correctness of the result.

Another alternative is to leave a node unexplored if we want to explore only a limited
number of states or restrict the search to a given subset of states. Then we only have to
check if the state is a deadlock. If not, we just store the information that we encountered
an such a node. The constructed atoms have no outgoing transitions and are trivial
SCCs. So the node won’t lead to a false counter-example. If we do not find a counter-
example we give the user a warning that not the whole state space was considered.

4.4.6 Correctness of the algorithm

The algorithm is used to find a counter-example for a given LTL formula. This is done
by searching for a path of atoms to a self-fulfilling SCC or an SCC that consists of a
deadlock state. The proof consists of two steps: First we show the equivalence between
the existence of a counter-example and the existence of an eventuality sequence, then
we show the equivalence of the existence of an eventuality sequence and the existence
of a path to an SCC.

The complete proof (without our additions to the LTL semantics and the algorithm)
can be found in [CGP99], we extend it only in a way that it covers our additions.

Definition 3. An eventuality sequence πα is an infinite α-path or finite α-path ending in an
atom of a deadlock state such that if ψ1Uψ2 ∈ FA for an atom A on πα, there exists an atom B on
π after A with ψ2 ∈ FB.

Lemma 1. There exists a path π starting in s0 with π |= ϕ iff there exists an eventuality sequence
starting at an atom (s0, F0) such that ϕ ∈ F.

Proof. We first show that the existence of an eventuality sequence implies the existence
of π, then we show the reverse direction.

1. Let πα = (s0, F0)
t0−→(s1, F1)

t1−→ . . . be an eventuality sequence starting in (s0, F0) =
(s, F) with ϕ ∈ F. The corresponding path is π = s0, s1, . . .. We prove π |= ϕ by
showing that πi |= ψ ⇔ ψ ∈ Fi holds for every ψ ∈ Cl(ϕ) and 0 ≤ i < |π|. The
proof is done by induction on the subformulas of ϕ. We describe only the two
cases that are affected by our changes to the LTL semantics.

a) If ψ = Xϕ1: If si ∈ deadlocks then by definition Xϕ1 /∈ Fi and πi �|= Xϕ1.

If si /∈ deadlocks then we have a transition from (si, Fi) to (si+1, Fi+1), implying
that Xϕ1 ∈ Fi ⇔ ϕ1 ∈ Fi+1. By induction we know ϕ1 ∈ Fi+1 ⇔ πi+1 |= ϕ1

and by definition πi+1 |= ϕ1 ⇔ Xπi |= ϕ1 holds.
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b) If ψ = [t] with t ∈ TP: If si ∈ deadlocks then it follows from the definition of
an atom that [t] /∈ Fi and from the definition of |= if follows πi �|= [t].

If si /∈ deadlocks then there exists a transition (si, Fi)
t′−→(si+1, Fi+1). By defini-

tion [t] ∈ Fi ⇔ t = t′ and πi = si
t−→si+1 . . . ⇔ πi |= [t].

2. Let π = s0 t0−→s1 t1−→ . . . be a path with π |= ϕ. Let Fi = {ψ |ψ ∈ Cl(ϕ) ∧ πi |= ψ}.

First we show that there is an α-path πα = (s0, F0)
t0−→(s1, F1)

t1−→ . . ..

a) All (si, Fi) are atoms. This can be seen by comparing the definition of |= with
the definition of consistency of an atom’s formulas.

b) If si ∈ deadlocks: si is the last element of π. Because there is no transition in R
starting in si, there is neither a transition starting in (si, Fi).

If si /∈ deadlocks: There is a state si+1 in π. We show that there is a transition
from (si, Fi) to (si+1, Fi+1): For every Xψ ∈ Cl(ϕ) holds by definition that πi |=
Xψ ⇔ πi+1 |= ψ and we have Xψ ∈ Fi ⇔ πi |= Xψ and ψ ∈ Fi+1 ⇔ πi+1 |= ψ,
it follows that Xψ ∈ Fi ⇔ ψ ∈ Fi+1.

Also for every [t] ∈ Cl(ϕ), t ∈ TP holds πi |= [t] ⇔ t ∈ ti, πi |= [t] ⇔ [t] ∈ Fi ,
it follows that t ∈ Fi ⇔ t ∈ ti.

For every ψ1Uψ2 ∈ Fi there is a Fj, i ≤ j < |π|, such that ψ2 ∈ F, because ψ1Uψ2 ∈
Fi ⇔ πi |= ψ1Uψ2 and by definition there is a j with i ≤ j < |π|, such that πj |= ψ2

and that implies ψ2 ∈ Fj. So πα is an eventuality sequence.

Lemma 2. There exists an eventuality sequence starting at an atom (s0, F0) iff there is a path in
G from (s0, F0) to a self-fulfilling SCC or an SCC consisting of a deadlock state.

Proof. We only consider the case where the path ends in a deadlock state. The other,
infinite, case can be found in the original proof.

1. Let πα = (s0, F0)
t0−→ . . . td−1−→ (sd, Fd) be a finite eventuality sequence ending in the

deadlock state sd. We know that (sd, Fd) has no outgoing edges, so the atom is the
only node in the SCC.

2. Let there be a path (s0, F0)
t0−→ . . . td−1−→ (sd, Fd) to an SCC consisting of just a deadlock

state (sd, Fd). We have to show that πα is an eventuality sequence by proving that
for every occurrence of ψ1Uψ2 ∈ Fi (0 ≤ i ≤ d) there is an atom (sj, Fj), i ≤ j ≤ d
with ψ2 ∈ Fj. Then, by the definition of an atom, ψ2 ∈ Fi or X(ψ1Uψ2) ∈ F implies
ψ1Uψ2 ∈ Fi+1. Now we assume ψ2 /∈ Fj for all j with i ≤ j ≤ d. Then we know
that X(ψ1Uψ2) ∈ Fj, it follows that X(ψ1Uψ2) ∈ Fd. But sd is a deadlock state, so
X(ψ1Uψ2) /∈ Fd, we have a contradiction. So there is an atom (sj, Fj) with ψ2 ∈ Fj.

The lemmas 1 and 2 together show that there exists a counter-example to a formula
iff the presented algorithm finds a suitable SCC.
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4.5 LTL[e] with past

The definition of LTL[e] in Section 4.3 only considers operators that enable us to express
properties about current or future states of the system. LTL with past [LS95] makes it
possible to reason about previous states and transitions by introducing operators such
as

• Y, which stands for “yesterday” and is the dual of the LTL[e] next state operator X,
and

• S, which stands for “since” and is the dual of the LTL[e] operator until.

4.5.1 Definition of Past-LTL[e]

To support Past-LTL[e], we first have to make small modifications to the formal definition
of the LTL[e] operators. In the original definition of |= in Section 4.3, the current state of
a sequence π = s0 t0−→s1 . . . is always the first state s0. This prevents us from using this
notation to reason about the past of a sequence. E.g. π |= Xϕ is defined by π1 |= ϕ,
so ϕ cannot consider the state s0 anymore. To allow this, an index i is introduced that
indicates which state of the sequence is the current one.

Whether π = s0 t0−→s1 . . . satisfies a Past-LTL[e] formulaϕ in the ith state of the sequence
π in the Kripke structure M (denoted M, (π, i) |=p ϕ or shorter (π, i) |=p ϕ), is defined
by:

(π, i) |=p true ⇔ 0 ≤ i < |π|
(π, i) |=p p ⇔ 0 ≤ i < |π| and p ∈ L(si)

for atomic propositions p ∈ AP
(π, i) |=p ¬ ϕ ⇔ (π, i) �|=p ϕ

(π, i) |=p ϕ ∨ ψ ⇔ (π, i) |=p ϕ or (π, i) |=p ψ

(π, i) |=p Xϕ ⇔ i + 1 < |π| and (π, i + 1) |=p ϕ

(π, i) |=p ϕUψ ⇔ ∃ k : i ≤ k < |π| with (π, k) |=p ψ

and ∀ j : i ≤ j < k ⇒ (π, j) |=p ϕ

(π, i) |=p [t] ⇔ i + 1 < |π| and t ∈ ti

for transition labels t ∈ TP
(π, i) |=p Yϕ ⇔ i > 0 and (π, i − 1) |=p ϕ

(π, i) |=p ϕSψ ⇔ ∃ k : 0 ≤ k ≤ i with (π, k) |=p ψ

and ∀ j : k < j ≤ i ⇒ (π, j) |=p ϕ

The definition of (π, 0) |=p ϕ is equivalent to π |= ϕ for formulas that do not contain the
past operators Y or S.
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We introduce operators like once (O, dual to finally), history (H, dual to globally) and
trigger (T, dual to release) as usual:

Oϕ := true Sϕ
Hϕ := ¬ O¬ ϕ = ¬ (true S¬ ϕ)

ϕTψ := ¬ (¬ ϕ S¬ ψ)

We decided not to include a dual operator to [t], because it can be easily expressed by
Y[t].

4.5.2 Closure and atoms of a Past-LTL[e] formula

We add two rules to the definition of a closure Cl(ϕ) (cf. Section 4.4.2).

Yψ ∈ Cl(ϕ) ⇒ ψ ∈ Cl(ϕ)
ψ1 Sψ2 ∈ Cl(ϕ) ⇒ ψ1 ∈ Cl(ϕ), ψ2 ∈ Cl(ϕ),

Y(ψ1 Sψ2) ∈ Cl(ϕ)

To the consistency definition of an atom (s, F), we add rules for Y and S (cf. Section 4.4.3):

• If s /∈ S0 then Yψ ∈ F iff (Y¬ ψ) /∈ F for Yψ ∈ Cl(ϕ)

• If s ∈ S0 then

– Yψ ∈ F iff (Y¬ ψ) /∈ F for Yψ ∈ Cl(ϕ)
– or Yψ /∈ F for Yψ ∈ Cl(ϕ)

• ψ1Sψ2 ∈ F iff ψ2 ∈ F or ψ1,Y(ψ1Sψ2) ∈ F for ψ1Sψ2 ∈ Cl(ϕ)

The first rule is analogous to the non-deadlock case of the X operator. It states that either
Yψ or Y¬ ψ is true, but not both. But in the first state s0 of a sequence π = s0 t0−→s1 . . ., we
have the additional case that all formulas Yψ are false, even Ytrue. Because there might
be an si in π with si = s0, we can have both cases in an initial state s ∈ S0. The third rule
is analogous to the rule of the U operator.

We need an additional condition when there is an edge in G from an atom (s1, F1) to
an atom (s2, F2) (cf. Section 4.4.4):

• ψ ∈ F1 ⇔ Yψ ∈ F2 for all formulas Yψ ∈ Cl(ϕ)

The search for an SCC in G starts in the atoms (s0, F0) with s0 ∈ S0 where Yψ /∈ F0 for
all formulas Yψ ∈ Cl(ϕ).

The proofs of Lemma 1 and Lemma 2 can be easily extended to Past-LTL[e]. In the case
distinctions of the proofs, the operator Y can be handled analogously to the operator X
and the operator S analogously to the operator U where the path ends in a deadlock
state.
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4.6 Some Examples and Experiments

4.6.1 LTL[e]: Supported syntax and usage patterns

We provide several types of atomic propositions in our implementation:

• One can check if a B predicate holds in the current state by writing the predicate
between curly braces, e.g. ��������	
 � �.

• And with ����
 it can be tested if an operation �� is currently enabled.

• If the user animates the model, he can use an atomic proposition ������	 to check
if a state is the state that is shown in the animator. This allows the user to check a
formula f in that state for all paths that go through that state by using current ⇒ f .

And some types of transition propositions:

• With ���� it can be checked if op is the next executed operation in the path.

• We provide simple pattern matching for the arguments of an operation. E.g. with
�������
� one can check if the next operation is op and if its first argument is 5.
Any B expression (including constants and variables of the machine) or under-
scores as placeholders for any value can be used as an argument.

• In future, we also plan to support combined pre- and post-conditions like x′ > x
as transition propositions (where x′ refers to the value of x after the transition has
been executed).

Note that while checking if an operation is enabled with ����
 is an atomic proposition,
the check if the next transition is done via a certain operation with ���� depends on the
actual computation path, not only on the current state.

Some useful patterns of LTL[e] formulas for B/Z specifications (and sometimes also
CSP) are as follows:

• quasi-deadlock � �����
 �� ��� �� ����

 where ��,..,�� are the real state-
changing operations (as opposed to query operations). To improve support for
this pattern, we introduced another atomic proposition keyword ���� that is true
for states that have no outgoing transitions to other states.

• operation post-condition � � ���� �� � ����	 


(���� tests if the next executed operation is ��)

• operation pre-condition � � ����
 �� ���� 
.

• While animating a model, one may ask if an operation �� is executed in the past
of the current state, regardless of the computation path being taken to reach it:
������	 ��  �����.
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Later, in Section 4.6, we will see that LTL[e] is useful in practice to solve a variety of other
problems, and can also be used to encode fairness constraints.

In the rest of this section we exhibit the flexibility and practical usefulness of our
approach. Notably, we show how our tool can now be used to solve a variety of problems
mentioned in the literature. We also show that the tool is practically useful on a variety
of case studies.

All experiments were run on a Linux PC with an AMD Athlon 64 Dual Core Processor
running at 2 GHz, and using ProB 1.2.8 built from SICStus Prolog 4.0.2. Our model
checker can actually drive the construction of the state space on demand. However, to
clearly separate the time required for the LTL checking and the state space construction,
we have first fully explored the state space in the examples below.

4.6.2 B Examples: Volvo Vehicle Function, Robot, and Card Protocol

We have tried our tool on a case study performed at Volvo on a typical vehicle function
(see [LB03]). The B machine has 15 variables, 550 lines of B specification, and 26 op-
erations and was developed by Volvo as part of the European Commission IST Project
PUSSEE (IST-2000-30103).

To explore the full state space (1360 states and 25696 transitions) ProB required 25.29 sec-
onds. Some of the LTL[e] formulas we checked are as follows:

• � ���������	�
����������

�� �����	�
����	����������������

The formula is valid and the model checking time is 0.12 seconds.

• � ������	�
����	������������

�� � ��������	�
�����������

A counter-example was found after 0.14 seconds.

• � �����	�
����	������������

�� � ��������	�
�����������

The formula is valid and the model checking time is 0.20 seconds.

• �������	�
������

�� ���������	�
�����������

The formula is valid and the model checking time is 0.21 seconds.

We have also applied our tool to the (very) small robot specification from [Gro06a].
The original LTL formula ��� !��"#$%& ' � !����(�%&� ��  !����(�%&� from [Gro06a]
can now be validated fully automatically (and instantaneously). It is interesting to ob-
serve that the intended temporal property can be more naturally encoded in our exten-
sion LTL[e] as follows: ���$����� ��  !����(�%&�.

We have applied our tool on the T=1 protocol3 specification from [CJMB05]. Com-
puting the state space took 0.02 seconds (for 15 nodes). We tested the formula P1 =

3En27816-3, European Standard—identification cards—integrated circuit(s) card without contacts—
electronic signal and transmission protocols, 1992.
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��������	
�� 
� �������	
��� from [CJMB05]. This took less than 0.01 seconds
(and 36 atoms were computed). However, our model checker provided a counter-example.
This is not surprising, as [CJMB05] also takes fairness constraints into account. These
fairness constraints are written in [CJMB05] as FAIRNESS = {Eject,Csends if (CardF2 =
bl),Rsends if (ReaderF2 = bl)}. Fortunately, these fairness constraints can be expressed
in our LTL[e] language as follows:

f = ��������� � ��������	
�� 
� �����������

� �����������	
�� 
� �����������

Checking the formula f ⇒ P2 was successful (no counter-example found); this took
12.65 seconds (98,304 atoms where computed). The time is an illustration that LTL
model checking is exponential in the size of the formula; it may be worthwhile to in-
vestigate adapting our algorithm to incorporate fairness, rather than encoding fairness
in the LTL[e] formula itself.

Finally, we believe that our LTL model checker can be used to check probabilistic Event
B models ([HH07]), by enabling the encoding of the required fairness constraints.

4.6.3 CSP Examples: Peterson and Train Level-Crossing

First we tried a standard CSP example from the book web page of [Sch99]4, Peterson’s
Algorithm version 1. Computing the state space, consisting of 58 nodes and 115 tran-
sitions, took 0.44 seconds with ProB (which has recently been extended to handle full
CSP-M). Some of the LTL[e] formulas checked are as follows:

• � ������������� 
� ������	���������� �

The formula is valid; the model checking time is 0.01 seconds.

• � �������������


� �������	����������  ������!�� ��

The formula is valid; the model checking time is 0.01 seconds.

• � ���	���������


� ������������������  ��	���!�� ��

The formula is valid; the model checking time is 0.02 seconds.

We have also tested version 2 of the same algorithm. Computing the state space with
215 nodes and 429 transitions took 1.28 seconds.The CSP model is more generic and
elegant than the first version, which enables us to write a single LTL[e] formula basically
covering the last two formulas from above.

• � �����������


� ����������������  ����!����

The formula is valid; the model checking time is now 0.06 sec.

4������������	�
�������������	������

�����
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Another example we tested is �����������	, also from [Sch99]. This model by Bill
Roscoe describes a level crossing gate using discrete-time modelling in untimed CSP.
Computing the state space, consisting of 5517 nodes and 12737 transitions, took 53.76 sec-
onds. Some of the LTL[e] formulas we checked are as follows:

• 
 � ������� The formula is valid; the model checking time is 0.36 seconds.

• 
 � ������� A counter-example (of length 554) was found after 0.17 seconds.

4.6.4 CSP ‖ B Examples: Control Annotations and Philosophers

In [IST06] it is proposed to check compatibility of a CSP controller with a particular
B machine by adding proof obligations. For this the next annotation is introduced,
from which the proof obligations are derived. It turns out that these annotations can
also be checked (now automatically) by our LTL model checker. For example, for the
traffic light controller from [IST06], the next annotation for the ���	 ��� operation
can be checked by the following LTL[e] formula: 
 ����	 ���� �� � �
� ����� �

�
� ���������. This check can be done instantaneously. We have checked all the next
assertions from [IST06] fully automatically and instantaneously.

We have also applied our LTL[e] model checker to a fully combined CSP and B model.
The B model is the generic dining philosophers example from [LM07] instantiated for
three philosophers and three forks, using symmetry reduction (cf. Section 4.7), and
where the protocol is specified by a CSP Controller.

������	� � !��� � 	" # 	$ # 	%

�!����� �!��&'���'(�&�)�*����&'

(�&�+��!����&',��	���& - � !���

��./ � ### 	- � !��� 0  1.)	�

 1.) � � �!��&2 3� (�&�)�*����&2 3�

(�&�+��!����&2 3� ���2 3�

,��	���&2 3� ,��	���&2 3�  1.) �

We have validated the following LTL[e] formula in 0.06 seconds:

• 
 �,��	���&� 4

�(�&�)�*����&� �� �(�&�+��!����&���

4.6.5 Z Examples: SAL Example and Workstation Protocol

In [PL07], ProB was extended to deal with Z specifications. We examined the example
from [DNS06], formalising the process of joining an organisation. We were able to check
the three LTL formulas described there:

• 2 � 5����6�67����$8 (ProB provides a counter-example)

• 2 � 5����9��������$8 (ProB provides a counter-example)
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Figure 4.1: Counter-example found for the Z model

• � ��������	
	������������������ (the formula is true)

Model checking time is 0.08 sec to construct the state space plus less than 0.01 sec for each
LTL check. This is faster than the times reported in [DNS06] (ranging from 3 seconds
to 12 hours depending on the translation to SAL). In addition, we were able to uncover
an error in the specification, namely that it is possible to reach a quasi-deadlock state
where only probing operations are possible and no “real” operation can be performed,
i.e., the following LTL[e] formula is false:

• � �����	� �� ����	�� �� ��������

Note that this error was not uncovered in [DNS06].
We have also tested our tool on the workstation protocol industrial case study from

[PL07]. Computation of the state space for 2 workstations took 2.49 seconds, resulting
in 68 states.

The formula ������������� !���������"#��
$% �� ���������&����was checked
in 0.04 seconds, using 421 atoms.
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4.6.6 Other Formalisms: StAC, Object Petri nets, dSL

ProB has also the ability to load specifications via custom Prolog interpreters following
the style of [LM00], describing the initial states, the properties and the transition relation
by using the Prolog predicates �������, �����	, ���
���.

This directly opens up LTL model checking for three further formalisms, for which
we have such interpreters: Compensating CSP (StAC) [BF00], Object Petri Nets, [FL04],
and dSL [WGMM05].

We have applied our LTL model checker to a door control system specified in dSL.
Computing the state space with 9968 nodes and 37357 transitions took 13.25 seconds.
Checking a safety property � ������
� took 39.21 seconds.

4.7 LTL Model Checking with Symmetry Reduction

Combining full blown LTL model checking and symmetry reduction is not always easy.
If one is not careful, the application of symmetry reduction can lead to unsoundness
for more complicated LTL formulas. Quite often, only safety properties or some other
subset of LTL is supported. E.g., murphi ([ID93]) only deals with safety properties. An
exception is, e.g., SMC ([SGE00]), which does deal with safety and liveness properties
(expressed as an automata).

It turns out that the presented LTL[e] language is the ideal companion to the existing
symmetry reduction techniques developed for ProB [LBST06, LM07, TLSB07], i.e., we
can apply the symmetry reduction techniques and need to impose no restrictions what-
soever on the LTL[e] formulas. This meant that, in preliminary experiments, we were
actually able to model check some examples considerably faster, than using spin with
partial order reduction on hand-translated Promela models.

Let us recall some of the results from [LBST06]. First, the notion of a permutation is
introduced, which can permute elements of deferred sets. DS is the set of all deferred
sets of the B machine under consideration.

Definition 4. Let DS be a set of disjoint sets. A permutation f over DS is a total bijection
from ∪S∈DSS to ∪S∈DSS such that ∀ S ∈ DS we have {f (s) | s ∈ S} = S.

The following results show that the deferred sets induce a symmetry in the state space:
if in a given state s we permute the deferred set elements, the resulting state will be
symmetrical to s.

Theorem 1. For any expression E, predicate P, state [V := C] and permutation function f :

f (E[V := C]) = E[V := f (C)]
P[V := C] ⇔ P[V := f (C)]

Corollary 1. Every state permutation f for a B machine M satisfies

• ∀ s ∈ S : s |= I iff f (s) |= I
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• ∀ s1 ∈ S, ∀ s2 ∈ S:
s1 →M

op.a.b s2 ⇔ f (s1) →M
op.f (a).f (b) f (s2).

From these theoretical results in [LBST06] we can deduce a new result for LTL[e]:

Proposition 1. Let f be a permutation function, s a state of B machine M and φ a LTL[e] formula.
Then M, s |= φ iff M, f (s) |= φ.

Proof. (Sketch)

• By Theorem 1, if a predicate � ���� � is true in a state then it is true in all permu-
tation states.

• By Corollary 1, if a sequence of operations is possible in s then a permuted se-
quence is possible in the state π(s). As the permutation does not affect the enabled
operations nor the operation label itself (just the arguments): we can deduce that
a LTL[e] formula is true in s iff it is true in π(s).

In other words, there exists a LTL[e] counter-example for a B machine iff there exists
one with symmetry reduction. As Z specifications are translated internally into B ma-
chines ([PL07]), all of the above also applies when model checking Z specifications.

4.8 Related and Future Work, Discussion and Conclusion

4.8.1 More Related Work

There are variety of relatively generic CTL model checkers, such as [LM00, NL00, DP01].
Both [NL00] and [DP01] are based on constraint logic programming. [NL00] requires
constructive negation, and as such only a prototype implementation seems to exist.
[DP01] is tailored towards verification of infinite state systems.5 The CTL model checker
in [LM00] is generic, and can be applied to any specification language that can be en-
coded in Prolog. Unfortunately, the model checker relies on tabling, and as such it
can only run on XSB Prolog [SSW94], which does not support co-routines and hence
the system can not be applied to our interpreters for CSP and B (and hence also Z).
The same can be said for the pure LTL model checker from [PR00] or the xmc system
[CDD+98, RRR+97] for the modal mu-calculus and value-passing CCS.

5Unfortunately, the corresponding DMC prototype available at
������������	
	���	��	�����
������������������������� no longer runs on current SICStus
Prolog versions and the code is no longer maintained.
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4.8.2 Future Work

Adding fairness constraints to an LTL[e] formula leads to an exponential growth of the
search graph. We plan to incorporate support for fairness directly into the algorithm by
validating if a found SCC satisfies the fairness constraints or not.

We think that expressive transition propositions have many useful applications. We
want to extend the model checker in a way that combined pre- and post-conditions can
be checked, optionally with access to the parameters of the executed operations.

Currently, a counter-example is presented to the user by moving the animation into
the final state of the path and having the complete path in the history of the animation
(in Fig. 4.1, the box in the right bottom corner shows the history). This is unsatisfactory,
as it is not always easy to see why the presented path is a counter-example. We plan to
improve the presentation and investigate how the length of the counter-example can be
minimised.

4.8.3 Conclusion

In summary, we have presented LTL[e] to conveniently express temporal properties of
formal models. Indeed, LTL[e] can be used, e.g., to express pre- and post-conditions
of operations, fairness constraints as of [CJMB05], the next control annotations from
[IST06], as well as a large class of interesting properties which cannot be directly ex-
pressed in pure LTL. We have shown an algorithm for LTL[e], proven it correct with and
without symmetry reduction, and have integrated it into the ProB tool set. In the em-
pirical section, we have shown that LTL[e] is expressive enough and that our tool is fast
enough for a variety of practical applications.
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5 Validating B,Z and TLA+ using ProB and

Kodkod

Daniel Plagge, Michael Leuschel

Abstract. We present the integration of the Kodkod high-level inter-
face to SAT-solvers into the kernel of ProB. As such, predicates from
B, Event-B, Z and TLA+ can be solved using a mixture of SAT-solving
and ProB’s own constraint-solving capabilities developed using
constraint logic programming: the first-order parts which can be
dealt with by Kodkod and the remaining parts solved by the existing
ProB kernel. We also present an empirical evaluation and analyze the
respective merits of SAT-solving and classical constraint solving. We
also compare to using SMT solvers via recently available translators
for Event-B.

Keywords: B-Method – Z – TLA – Tool Support – SAT –

SMT – Constraints.

5.1 Introduction and Motivation

TLA+ [Lam02], B [Abr96] and Z are all state-based formal methods rooted in predicate
logic, combined with arithmetic and set theory. The animator and model checker ProB
[LB03] can be applied to all of these formalisms and is being used by several companies,
mainly in the railway sector for safety critical control software [LFFP09, LFFP11]. At the
heart of ProB is a kernel dealing with the basic data types of these formalisms, i.e., inte-
gers, sets, relations, functions and sequences. An important feature of ProB is its ability
to solve constraints; indeed constraints can arise in many situations when manipulating
a formal specification: the tool needs to find values of constants which satisfy the stipu-
lated properties, the tool needs to find acceptable initial values of a model, the tool has
to determine whether an event or operation can be applied (i.e., is there a solution for
the parameters which make the guard true) or whether a quantified expression is true or
not. Other tasks involve more explicit constraint solving, e.g., finding counterexamples
to invariant preservation or deadlock freedom proof obligations [HL11]. While ProB
is good at dealing with large data structures and also at solving certain kinds of com-
plicated constraints [HL11], it can fare badly on certain other constraints, in particular
relating to relational composition and transitive closure. (We will illustrate this later in
the paper.)
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Another state-based formalism is Alloy [Jac02] with its associated tool which uses
the Kodkod [TJ07] library to translate its relational logic predicates into propositional
formulas which can be fed into SAT solvers. Alloy can deal very well with complicated
constraints, in particular those involving relational composition and transitive closure.
Compared to B, Z and TLA+, the Alloy language and the Kodkod library only allow
first-order predicates, e.g., they do not allow relations over sets or sets of sets.

The goal of this work is to integrate Kodkod into ProB, providing an alternative way
of solving B, Z and TLA+ constraints. Note that we made sure that the animation and
model checking engine as well as the user interface of ProB are agnostic as to how the
underlying constraints are solved. Based on this integration we also conduct a thorough
empirical evaluation of the performance of Kodkod compared to solving constraints
with the existing constraint logic programming approach of ProB. As we will see later in
the paper, this empirical evaluation provides some interesting insights. Our approach
also ensures that the whole of B is covered, by delegating the untranslatable higher-
order predicates to the existing ProB kernel.

5.2 B, Z, TLA+ and Kodkod in comparison

ProB can support Z and TLA+ by translating those formalisms to B, because these for-
malisms have a common mathematical foundation. In the case of TLA+ a readable
B machine is actually generated, whereas a Z specification is translated to ProB’s in-
ternal representation because some Z constructs did not have a direct counterpart in B’s
syntax. In the next sections we refer only to B, but because all three notations share the
same representation in ProB, all presented techniques can be applied likewise to the two
other specification languages.

If we specify a problem in B, we basically have a number of variables, each of a certain
type and a predicate. The challenge for ProB is then to find values for the variables that
fulfil the predicate. For simplicity, we ignore B’s other concepts like machines, refine-
ment, etc.

Kodkod provides a similar view on a problem. We have to specify a number of re-
lations (these correspond to our variables in B) and a formula (which corresponds to a
predicate in B) and Kodkod tries to find solutions for the relations.

From this point of view, the main difference between B and Kodkod is the type system:
Instead of having some basic types and operations like power set and Cartesian product
to combine these, Kodkod has the concept of a universe consisting of atoms. To use
Kodkod, we must define a list of atoms and for each relation we must specify a bound
that determines a range of atoms that can be in the relation.

The bound mechanism can also be used to assign an exact value to a relation. This is
later useful when we have already computed some values by ProB.
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bentry

b1

b2

b3

b4

b5
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bexit

Figure 5.1: Control flow graph of a program

5.3 Architecture

5.3.1 Overview

We use a small example to illustrate the basic mechanism how Kodkod and SAT solv-
ing is integrated into ProB’s process to find a model for a problem. Details about the
individual components are presented below after this overview.

Our small problem is taken from the “dragon book” [ALSU07] and formalised in B.
The aim is to find loops in a control flow graph of a program (see Figure 5.1).

We model the basic blocks as an enumerated set Blocks with the elements b1, b2, b3,
b4, b5, b6, bentry, bexit. The successor relation is represented by a variable succs, the set of
the nodes that constitute the loop by L and the entry point of the loop by lentry. The
problem is described by the B predicate:

succs = {bentry �→ b1, b1 �→ b2, b2 �→ b3, b3 �→ b3,
b3 �→ b4, b4 �→ b2, b4 �→ b5,
b5 �→ b6, b6 �→ b6, b6 �→ bexit}

∧ lentry ∈ L
∧ succs−1[L \ {lentry}] ⊆ L
∧ ∀ l.(l ∈ L ⇒ lentry ∈ (L � succs � L)+[{l}])

In total, there are seven different solutions to this problem, for instance L = {b2, b3, b4}
with lentry = b2.

After parsing and type checking the predicate, we start a static analysis (the box “Anal-
ysis” in Fig. 5.2) to determine the integer intervals of all integer expressions. In our sim-
ple case, the analysis is not necessary. In Section 5.3.4 we describe how this analysis
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Interpreter
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Translation

Analysis

ProB

Java
Interface

Kodkod

SAT SolverJava

B Specification

Figure 5.2: Overview of the architecture

works and under which circumstances it is needed.
In the next phase, we try to translate the formula from B to Kodkod (“Translation”

in Fig. 5.2). First we have a look at the used variables and their types: succs is of type
�(Blocks × Blocks), L of type P(Blocks) and lentry of type Blocks. Blocks is here the only
basic type that is used. Thus we have to reserve 8 atoms in the Kodkod universe to
represent this type; each atom in the universe corresponds directly to a block bi. The
variables can be represented by binary (succs) and unary (L and lentry) relations, where
we have to keep in mind that the relation for lentry must contain exactly one element.
The B predicate can be completely translated to a Kodkod problem. In Section 5.3.2 we
will describe the translation in more detail. It can be useful to keep a part of the formula
untranslated: since the part succs = {. . .} is very easy to compute by ProB, we leave it
untranslated. The translated formula has the form:

��� ������ ��

������ 	� 
 ��

��
������� � ������ 	� 
 ��

��� �� ��� ������ � �� 	� 
 ��

������ 	� �������
������������������������


The translated description of the formula is then stored and a mapping between ProB’s
internal representation and Kodkod’s representation of values is constructed (“Map-
ping” in Fig. 5.2). The message “new problem with following properties. . . ” is sent to
the Java process.

The Kodkod problem gets a unique identifier and the translated part of the B predicate
is replaced by a reference to the problem, i.e., succs = {. . .} ∧ ������(ID), and then
given to the B interpreter of ProB.

When the ProB interpreter starts to evaluate the predicate, it prioritises which parts
should be computed first. It chooses succs = {. . .} because it can be computed deter-
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ministically by ProB’s core and finds a value for succs. Then a message “We have these
values for succs, try to find values for the other variables” is sent to the Java process.

The Java process has now a complete description of the problem. It consists of the
universe (with 8 atoms) and relations for the variables and the type Blocks itself. The
bounds define the value of succs and Blocks and ensure that all relations contain only
atoms that match their corresponding types. This information is then given together
with the formula to the solver of the Kodkod library (“Kodkod” in Fig. 5.2) that translates
the problem into a SAT problem and passes this to the SAT solver.

The SAT solver finds solutions that are transformed by Kodkod to instances of the re-
lations that fulfil the given formula The values of the previously unknown relations that
represent L and lentry are sent back in an answer to the ProB process. The answer is then
mapped to ProB’s internal representation of values. The B interpreter can now continue
with the found values. Now all predicates have been evaluated and the solutions can
be presented to the user.

5.3.2 Translation

Representing values

It turns out that the available data types in Kodkod are the main limitation when trying
to translate a problem described in B. Let’s first have a look at the available data types
in B and how they can be translated to Kodkod. We have the basic data types:

Enumerated Sets Enumerated sets can directly be translated to Kodkod. For each ele-
ment of the set, we add an atom to the universe and create a unary relation that
contains exactly that atom. The relation is needed in case the element is referred to
in an expression. We create another unary relation for the whole set that contains
exactly all atoms of the enumerated set.

Deferred Sets Deferred Sets in B can have any number of elements that are not further
specified. For animation, ProB chooses a fixed finite cardinality for the set, either
by an analysis of the axioms or by using user preferences. Then we can treat de-
ferred sets just like a special case of enumerated sets.

Booleans The set of Booleans is a special case of an enumerated set with two elements
TRUE and FALSE.

Integer Integers in B represent mathematical numbers, they can be arbitrary large. It is
possible to represent integer values in Kodkod, but the support is very limited and
special care has to been taken. We describe the handling of integers in Section 5.3.3
in detail.

Thus, we can map a B variable of a basic data type to a Kodkod relation. Since Kod-
kod treats every relation as a set, we must ensure explicitly that the relations for such
variables contain exactly one element.
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Example. Let’s assume that we use two types in our specification, an enumerated set
E = {a, b, c} andBOOL. Treating the Booleans as enumerated setBOOL = {TRUE,FALSE},
we have the following universe with five atoms:

E BOOL

B value a b c TRUE FALSE

atom 0 1 2 3 4

We can now represent a variable of type E by a unary relation �� whose elements are
bounded to be a subset of the atoms 0 . . 2. We also have to add the Kodkod formula
��� ��.

In B, two or more basic types can be combined with the Cartesian product. Variables
of such a type can be represented by a relation.

Example. If we have a variable of type (E×E)×BOOL, we can represent it by a ternary
relation �� whose elements are bound to subsets of the atoms 0 . . 2× 0 . . 2× 3 . . 4. Like
in the example above, we have to add the condition ��� ��.

We can construct the power set P(α) for any type α in B. A variable of type P(α) can be
mapped to a Kodkod relation if α is itself not a set. A relation for P(α) is defined exactly
as a relation for α but without the additional restriction that it must contain exactly one
element.

Finally, let’s have a look at what we cannot translate. All “higher-order” data-types,
i.e. sets of sets are not translatable. E.g a function f ∈ A� P(B) cannot be handled.

It turned out that unary and binary relations are handled very well. With relations of
a higher arity we encounter the problem that many operators in Kodkod are restricted
to binary relations. Thus it is not as easy to translate many properties using these data
types.

Translating predicates and expressions

One of the central tasks in combining ProB and Kodkod is the translation of the B pred-
icate that specifies the problem to a Kodkod formula. Many of B’s most common opera-
tors can be directly translated to Kodkod, especially when basic set theory and relational
algebra is used. It is not strictly necessary to cover all operators that B provides, because
we always have the possibility to fall back to ProB’s own constraint solving technique.
Of course, we strive to cover as many operators as possible.

Operators on Predicates. The basic operators that act on predicates like conjunction,
disjunction, etc. have a direct counterpart in Kodkod. This includes also universal and
existential quantification.

Arithmetic operators. Addition, subtraction and multiplication of integers can also
directly be translated, whereas division is not supported by Kodkod. Other supported
integer expressions are constant numbers and the cardinality of a set. If we want a
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B Kodkod

A ∈ B T (A) �� T (B)
A ⊆ B T (A) �� T (B)
A × B T (A) �� T (B)
A �→ B T (A) �� T (B)
A ∩ B T (A) � T (B)
A ∪ B T (A) � T (B)
A \ B T (A) � T (B)
A[B] T (B)�T (A)

A(B) T (B)�T (A)

A �− B T (A)��T (B)
A−1 �T (A)

A+ 	T (A)

(a) direct translation

B Kodkod

dom(A) 
����A(α)��T (A)�

with A being of type P(α× β)

ran(A) 
��A(α)���A(A)��T (A)�

with A being of type P(α× β)

prj1(A) T (dom(A))

prj2(A) T (ran(A))

A � B (T (A) �� T (β)) � T (B)
with B being of type P(α× β)

A �− B �������T (A)���T (α)� � T (B)
with B being of type P(α× β)

bool(P) �� T (P) ���� T (TRUE) ���� T (FALSE)

f ∈ A� B 
�����T (f ), T (A), T (B)�
f ∈ A → B �����T (f ), T (A), T (B)�
f ∈ A � B �����T (f ), T (A), T (B)� ��

(T (f )��T (f )) �� ����

(b) more complex rules

Figure 5.3: Examples for translation rules

variable to represent an integer, we have to convert explicitly between a relation that
describes the value and an integer expression (see Section 5.3.3).

Relational operators. Many operators that act on sets and relations can be translated
easily to Kodkod. Figure 5.3a shows a list of operators that have a direct counterpart in
Kodkod. With T (A) we denote the translated version of the expression A. Please note
that the expressions A ∈ B and A ⊆ B are translated to the same expression in Kodkod.
This is due to the fact that single values are just a special case in Kodkod where a set
contains just one element. The same effect can be found at the Cartesian product (A×B)
and a pair (A �→ B) and at the relational image (A[B]) and the function application (A(B)).

Other operators need a little bit more work. They can be expressed by combining
other operators. Figure 5.3b shows a selection of such operators. In the table, we use an
operator A(E) to denote the arity of the relation that represents the expression E. Again
we can see that different operators in B (e.g. dom and prj1) lead to the same result.

5.3.3 Integer handling in Kodkod

Kodkod provides only a very limited support for integers. The reason for this is twofold.
Since SAT solvers are used as the underlying technology, integers are encoded by binary
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binary numbers

for integer sets

atom . . . i0 i1 i2 i3 i4 i5 i6 i7 i8 . . .

associated integer value . . . −1 0 3 5 1 2 4 8 −16 . . .

Figure 5.4: Mapping atoms to integer values

numbers. Operations like addition then have to be encoded as boolean formulas. This
makes the use of integers ineffective and cumbersome. Another reason is that the de-
signers of Alloy – where Kodkod has its origin – argue [Jac02] that integers are often not
very useful and an indication of lack of abstraction when modeling systems.

Our intention is to make our tool applicable to as many specifications as possible,
and many of the B specifications we tried contained some integer expressions. Indeed,
integers are used to model sequences in B or multi-sets in Z.

When using Kodkod with integers, we have to specify the number of bits used in
integer expressions. Integer overflows are silently ignored, e.g. the sum of two large
naturals can be negative when the maximum integer size is exceeded. Thus we need to
ensure that we use only integers in the specified range to prevent faulty results.

Kodkod distinguishes between relational and integer expressions. An integer expres-
sion is for example a constant integer or the sum of two integer expressions. Comparison
of integer expressions like “less than” is also supported. In case we want a relation (i.e.
a variable) that represents an integer, we must first assign values to some atoms. Fig-
ure 5.4 shows an example with a universe consisting of 9 atoms i0, . . . , i8 that represent
integers.

We have basically two options when we want represent integers by a relation:

• We can represent sets of integers in the interval a . . b by having an atom for each
number in a . . b. Then the relation simply represents the integers of its atoms.

E.g. with the universe in Figure 5.4, we can represent arbitrary subsets of −1 . . 5
by using a relation that is bounded to the atoms i0, . . . , i4.

The downside of this approach is that the number of atoms can become easily very
large.

• Single integers can be represented more compactly by using a binary number. E.g.
with the universe in Figure 5.4, we can represent a number of the interval −16 . .15
by using a relation that is bounded to the atoms i4 . . i8. A relation that consists of
the atoms i4, i6, i8 would represent the sum 1+4+ (−16) = −9. Kodkod provides
an operator to summarise the atoms of a relation, yielding an integer expression.

With this approach large numbers can be handled easily. The downside is that we
cannot represent sets of numbers.
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The atoms in the universe seen in Figure 5.4 are ordered in a way that we can use both
approaches to represent integers in the same specification.

It can be seen that we need an exact knowledge of the possible size of integer expres-
sions in the specification. To get the required information, a static analysis is applied
to the specification before the translation. See below in Section 5.3.4 for details of the
analysis.

Another problem that arises from having two kinds of integer representations, is that
we have to ensure the consistency of formulas that use integer expressions. We briefly
describe the problem in Section 5.3.5.

5.3.4 Predicate Analysis

In case that integers are used in the model, we need to know how large they can get in
order to translate the expressions. To get this information we apply a static analysis on
the given problem.

The first step of the analysis is that we create a graph that describes a constraint prob-
lem. For each expression in the abstract syntax tree, we create some of nodes depending
on the expression’s type that contain relevant information associated to the syntax node.
E.g. this might be the possible interval for integers, the interval of the cardinality for sets
or the interval in which all elements of a set lie.

By applying pattern matching on the syntax tree, we add rules that describe the flow
of information in the graph. E.g. if we have a predicate A ⊂ B, we can propagate all
information about elements of B to nodes that contain information about A. We evaluate
all rules until a fixpoint or a maximum number of evaluation steps is reached.

Example. Let’s take the predicate A ⊆ 3 . . 6 ∧ card(A) > 1. For each integer node
(1, 3, 6, card(A)) we create a node containing the integer range. For each of the sets A
and 3 . . 6 we create two nodes: One contains the range of the set’s cardinality, the other
describes the integer range of the set’s elements. Figure 5.5 shows the resulting graph.
In the upper part of each node the expression is shown, in the lower part the kind of
information that is stored in the node. The edges without any labels denote rules that
pass information just from one node to another. Those which are labeled with ≤, ≥,
<, > express a relation between integer ranges of the source and target node. There
is a special rule marked i → c (“interval to cardinality”) which deduces a maximum
cardinality from the allowed integers in a set. E.g. if all elements of a set I are in the
range x . . y, we know that card(I) ≤ y − x + 1. The graph in Figure 5.5 shows the
information we have about each node after the analysis. In particular, we know the
bounds of all integer expressions.

Currently the analysis is limited to integer intervals and cardinality, because this was
the concrete use case given by our translation to Kodkod. We plan to re-use the analysis
for other aspects of ProB. E.g. if we can deduce the interval of a quantified integer
variable, ProB can limit the enumeration of values to that range if it must test a predicate
for all possible values of that variable.
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3 . . 6

each element ∈ 3 . . 6

3

∈ 3 . . 3

6

∈ 6 . . 6

3 . . 6

cardinality 0 . . 4

A
each element ∈ 3 . . 6

A
cardinality 2 . . 4

card(A)

∈ 2 . . 4

1

∈ 1 . . 1

><

i → c

i → c

≥≤ ≤≥

Figure 5.5: Constraint system for A ⊆ 3 . . 6 ∧ card(A) > 1

Other types of information nodes are also of interest. For instance, we could infer the
information if an expression is a function or sequence to assist ProB when evaluating
predicates.

5.3.5 Integer representations

We have seen above in Section 5.3.3 that we have two distinct forms of representing
integers. Additionally we have Kodkod’s integer expressions when we want to compare,
add, subtract or multiply them. During the translation process we must ensure that the
correct representation is chosen for each expression and that the representations are
consistently used. If the take a simple equality A = B with A, B being integers as an
example, we must ensure that both sides use the same representation.

Internally, the result of the translation is an abstract syntax tree that describes the for-
mula. Some expressions in this syntax tree have annotations about the needed integer
representation. E.g., if the original expression in B is a set of integers, it has the anno-
tation that the integer set representation and not the the binary number representation
must be used. We now impose a kind of type checking on this syntax tree to infer if con-
versions between different integer representations have to be inserted in the formula.

5.3.6 Extent of the translation: Partitioning

Theoretically we can take any translatable sub-predicate of a specification and replace
it with a call to Kodkod. But usually, the overhead due to the communication between
the processes can easily get so large that incorporating Kodkod has no advantage over
using ProB alone.

A more sensible approach for a specification that is a conjunction of predicates P1 ∧
. . . ∧ Pn is to apply the translation to every Pi. All translatable predicates are then
replaced by one single call to Kodkod. But even here we made the experience that the
communication overhead can become large if not all predicates are translated.
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Our current approach is to create a partition of the predicates P1, . . . , Pn. Two pred-
icates are then in the same set of the partition if they both use the same variable. We
translate only complete partitions to keep the communication overhead small. There is
one exception: We do not translate simple equations where one side is a variable and
the other side an easy to compute constant. Such deterministic equations are computed
first by the constraint solver, so the value for such a variable will be computed before the
call to Kodkod is made. This keeps the translated formula small even for a large amount
of data.

5.4 Experiments

We have chosen a number of problems to compare the performance of ProB’s constraint
solving technique and Kodkod’s SAT solving approach. We have only used problems
that can be completely translated. Completely translated models are still fully integrated
into ProB, the results are converted to ProB’s internal format and can be used for further
animation and model checking. The results can be seen in Table 5.1.1 All experiments
were conducted on a dual-core Intel i7 2.8 GHz processor running under Linux. Min-
iSat was used as a SAT solver. The measured times do not contain time for starting up
ProB and for loading, parsing and type-checking the model. We measured the time to
compute all solutions to each problem. For Kodkod, we measured two different times:
The “total time” includes the translation of the problem, the communication between
the two processes and the time needed by the solver to produce solutions. The “solver
time” is the time that the Kodkod solver itself needs to find solutions, without the over-
head of translation and communication between the processes.

5.4.1 Analysis

Relational operators Let’s have a look at those problems where Kodkod is much faster
than ProB. These are “crew allocation”, “loop detection” and “WRSPM”. In all these
problems we search for instances for sets or relations and the problem is described by
relational operators and universal quantification. In this scenario, ProB sometimes starts
to enumerate possible instances for the sets or relations which leads to a dramatic de-
crease of performance.

Arithmetic and large relations The arithmetic problems (“Send More Money”, “Er-
atosthenes’ Sieve”) are solved by ProB much faster than by Kodkod. The first two prob-
lems deal with arithmetic. ProB uses internally a very efficient finite domain solver
(CLP/FD) to tackle such problems. On the other side, arithmetic is one of the weak-
nesses of Kodkod, as we already pointed out.

1 The source code of the examples are available in the technical report at:
�������������	���	
��	����������������������	��������
���������	��������������.
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ProB Kodkod

Model total solver

Who Killed Agatha? 177 123 12

Crew Allocation timeout∗ 297 112

20–Queens 110 8223 8076

Graph Colouring (integer sets) 50 2323 1859

Graph Colouring (enumerated sets) 50 1037 818

Graph Isomorphism 13 553 379

Loop detection in control flow 23037 117 12

SAT instance 11830 4143 588

Send More Money 7 1773 1578

Eratosthenes’ sieve (1 step) 7 5833 5712

Union of two sets (2000 elements) 33 4880 4659

Requirements WRSPM model timeout∗ 333 89

BPEL deadlock check 20 337 68

∗: interrupted after 60 seconds

Table 5.1: Comparing ProB and Kodkod (in milliseconds)
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Kodkod does not seem to scale well when encountering large relations (e.g. “union
of two sets”). This has only been relevant for certain applications of ProB, such as the
property verification on real data [LFFP09].

The graph colouring, graph isomorphism and 20-Queens problems are clearly faster
solved by ProB. The structure of the problem is somehow fixed (by having e.g. total
functions) and constraint propagation is very effective.

Room for optimization It can be seen that the graph colouring problem needs less
than half the time when it is encoded with enumerated sets instead of integers. This
indicates that the translation is not yet as effective as it should be. For the “SAT” prob-
lem, the translation and communication takes six time as long as the computation of the
problem itself. This shows that we should investigate if we can optimize the communi-
cation.

5.4.2 SMT and other tools

Very recently, an Event-B to SMT-Lib converter has become available for the Rodin plat-
form [DFGV12]. This makes it possible to use SMT solvers (such as veriT, CVC and
Z3 [dMB08]; we used version 3.2 of the latter within the Rodin SMT Solvers Plug-in
0.8.0r14169 in our experiments below) on Event-B proof obligations. We have experi-
mented with the translator on the examples from Table 5.1.2 This is done by adding a
theorem ��� to the model: this generates an unprovable proof obligation which in turn
produces a satisfiable SMT formula encoding the problem. For “Send More Money”
from Table 5.1 Z3 initially reported “unknown”. After rewriting the model (making the
inequalities explicit), Z3 was able to determine the solution after about 0.250 seconds.
It is thus faster than Kodkod, but still slower than ProB. Surprisingly, Z3 was unable to
solve the SMT-Lib translations for most of the other examples, such as the “Who killed
Agatha” example, the “Set Union” example or the “Graph Colouring” example. Simi-
larly, for the “Crew Allocation” example, Z3 was unable to find a solution already for
three flights.3 Furthermore, for the constraint solving tasks related to deadlock check-
ing, Z3 was not able to solve the translations of the simpler examples from [HL11]. It
is too early for a conclusive result, but it seems that more work needs to be put into the
B to SMT-Lib translator for this approach to be useful for model finding, animation or
constraint-based checking.

Other tools for B are AnimB [Ani], Brama and BZTT [LPU02]. They all have much
weaker constraint-solving capabilities (see [LFFP09, LFFP11]) and are unable to solve
most of the problems in Table 5.1. Another tool is TLC [YML99] for TLA+. It is very
good at model checking, but constraints are solved by pure enumeration. As such, TLC
is unable to solve, e.g., a 20 variable SAT problem, the NQueens problem for N>9 and
takes more than 2 hours for a variation of the graph isomorphism problem from Ta-
ble 5.1.

2Apart from “loop” which cannot be easily translated to Event-B due to the use of transitive closure.
3ProB solves this version in 0.06 seconds; Table 5.1 contains the problem for 20 flights.
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5.5 More Related Work, Discussion and Conclusion

5.5.1 Alternative Approaches

Before starting our translation to Kodkod, we had experimented with several other al-
ternate approaches to solve constraints in ProB. [WL04] offers the user a Datalog-like
language that aims to support program analysis. It uses BDDs to represent relations
and compute queries on these relations. In particular, one has to represent a state of the
model as a bit-vector and events have to be implemented as relations between two of
those bit-vectors. These relations have to be constructed by creating BDDs directly with
the underlying BDD library (JavaBDD) and storing them into a file. Soon after starting
experimenting with bddbddb it became apparent that due to the lack of more abstract
data types than bit vectors, the complexity of a direct translation from B to bddbddb was
too high, even for small models, and this avenue was abandoned.

SAL [SAL] is a model-checking framework combining a range of tools for reasoning
about systems. The SAL tool suite includes a state of the art symbolic (BDD-based) and
bounded (SAT-based) model checkers. Some first results were encouraging for a small
subset of the Event-B language, but the gap between B and SAL turned out to be too
big in general and no realistic way was found to handle important B operators.4 More
details about these experiments can be found in [PLLR09]. For Z, there is an ongoing
attempt to use SAL for model checking Z specifications [DNS08, DNS11]. The examples
presented in [DNS08, DNS11] are still relatively simple and pose no serious challenge
in constraint solving. As the system is not publicly available, it is unclear how it will
scale to more complicated specifications and constraints.

5.5.2 More Related Work

The first hand-translation of B to Alloy was undertaken in [MB02]. The paper [MMS08]
contains first experiments in translating Event-B to Alloy; but the work was also not
pursued. Later, [MGL10] presented a prototype Z to Alloy converter. The current status
of this system is available at the website ������������	
����������	���������	�����;
the applicability seems limited by the lack of type inference and limited support for
schemas. In contrast to these works, we translate directly to Kodkod and have a fully
developed system, covering large subsets of B, Event-B, Z and TLA+ and delegating the
rest to the ProB kernel.

A related system that translates a high-level logic language based on inductive def-
initions to SAT is IDP [WMD10]. Another recent addition is Formula from Microsoft
[JLB11], which translates to the SMT solver Z3 [dMB08].

5.5.3 Future Work

Currently our translation is only applicable for finding constraints satisfying the axioms
as well as for constraint based deadlock checking. We are, however, working to also

4Private communication from Alexei Iliasov and Ilya Lopatkin, March 6th, 2012.
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make it available for computing enabled events as well as for more general constraint-
based testing and invariant checking.

Another avenue is to enlarge the area of applicability to some recurrent patterns of
higher-order predicates. For example, many B specifications use total functions of the
type � � ��� �� ��	
��� which cannot be translated as such to Kodkod. However,
such functions can often be translated to relations of the form �� � ��� ��� �� by
adapting the predicates accordingly (e.g., translating �
�� to �������). More work is
also needed on deciding automatically when to attempt the Kodkod translation and
when predicates should be better left to the existing ProB kernel. Finally, inspired by
the experiments, we also plan to improve the ProB kernel for better solving constraints
over relational operators such as composition and closure.

5.5.4 Conclusion

After about three years of work and several attempts our translation to Kodkod is now
mature enough to be put into practice and has been integrated into the latest version
of the ProB toolset. The development required a considerable number of subsidiary
techniques to be implemented. As our experiments have shown that the translation can
be highly beneficial for certain kinds of constraints, and as such opens up new ways
to analyze and validate formal specifications in B, Z and TLA+. However, the experi-
ments have also shown that the constraint logic programming approach of ProB can be
superior in a considerable number of scenarios; the translation to Kodkod and down to
SAT is not (yet) the panacea. The same can be said of the existing translations from B to
SMT. As such, we believe that much more research is required to reap the best of both
worlds (SAT/SMT and constraint programming). An interesting side-effect of our work
is that the ProB toolset now provides a double-chain (relying on technology developed
independently and using different programming languages and paradigms) of valida-
tion for first-order predicates, which should prove relevant in high safety integrity level
contexts.

Acknowledgements

We want to thank Sebastian Krings for helping us in the SMT experiments. We also thank Alexei

Iliasov and Ilya Lopatkin for their earlier experiments involving translating Event-B to SAL and

the insights gained in that work. We are also grateful for discussions with Daniel Jackson and

Emina Torlak, in particular relating to encoding integers in Kodkod.

119





6 Conclusion

The leitmotif of the articles presented in this work is to simplify the life of an engineer
who is concerned with validation and verification of formal models. We have shown
how the work presented in the four articles had an impact on validation:

• The ProZ extension and the support for animation of refinements made animation
applicable to formalisms where such support was very limited before. We have
explained how animation itself has an impact to validation by making a system
understandable to the engineer and even to domain experts that have no expert
knowledge in formal methods. It also makes it possible to check whether a system
has desired properties.

• The LTL extension allows to formalise additional requirements about the system
and to check automatically whether the system under development fulfills them.

• The translation to Kodkod which is hardly noticed by the user makes animation
applicable to a broader range of specifications and improves its performance.

Verification is affected by

• supporting the engineer when he is trying to proof properties of the system by
detecting errors through explicit and constraint-based model-checking which is
both based on the ability to animate the underlying formalism. This is realized in
the articles about ProZ and about animation support for refinements.

• The model checker for LTL provides a way to verify if a model holds the specified
properties.

• Through the impact to animation the Kodkod translation also improves ProB sup-
port in animation and analysation of specifications and specific problems (e.g. in
the disprover) which again is used for support of the engineers verification pro-
cess.

All extensions are implemented as extensions to the ProB tool in such a way that they
can be easily applied by the engineer.
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